

Institute for Software-Integrated Systems

Technical Report

TR#: ISIS-15-104

Title: CyPhyML Language in the META Toolchain

Authors: Sandeep Neema, Jason Scott and Ted Bapty

This research is supported by the Defense Advanced Research Project Agency

(DARPA)’s AVM META program under award #HR0011-13-C-0041.

Copyright (C) ISIS/Vanderbilt University, 2015

i

Table of Contents
Table of Figures ... iii

1. Motivation and Design Rationale .. 1

1.1. Activities in META Design Flow ... 2

1.2. Heterogeneity of CPS Components... 3

1.3. Approach to Model Integration .. 5

2. CyPhy Language Taxonomy ... 6

2.1. Components .. 6

2.1.1. Component Metadata .. 8

2.1.2. Component Interfaces ... 8

2.1.3. Domain Models ... 9

2.2. Design Spaces .. 10

2.3. Design Evaluation (Test Benches) ... 14

2.3.1. Dynamics Test Benches .. 16

2.3.2. FEA Test Benches ... 16

2.3.3. Verification Test Bench .. 17

2.3.4. Parametric Exploration Test Bench .. 17

2.4. Extending the CyPhy Language ... 18

2.4.1. Components .. 18

2.4.2. Connectors .. 18

3. CyPhy Language Formalization .. 18

3.1. Semantic Backplane .. 18

3.1.1. MetaModeling Languages ... 20

3.1.2. Metamodels ... 20

3.1.3. Metamodeling Tools ... 22

3.2. Formal Specification of CyPhy ... 22

3.2.1. Structural Semantics ... 24

3.2.2. Denotational Semantics ... 26

3.2.3. Semantics of Signal Port Connections .. 28

ii

3.3. Formalization of language integration .. 29

3.3.1. Integration of structure .. 30

3.3.2. Bond Graph integration ... 31

3.3.3. Modelica integration ... 33

3.3.4. SignalFlow integration .. 34

3.3.5. Power Port Units ... 35

iii

Table of Figures

Figure 1: META Language Suite .. 3

Figure 2: Cyber-Physical Components ... 4

Figure 3: CyPhy as a Model Integration Language .. 5

Figure 4: Example CyPhy Component ... 6

Figure 5: Example Structural Aspect of a CyPhy Component Model .. 7

Figure 6: Example Dynamics Aspect of a CyPhy Component Model .. 8

Figure 7: Example Design Space Alternative ... 11

Figure 8: Example Constraints .. 12

Figure 9: Design Space Exploration. Before and After Constraint Application .. 12

Figure 10: Example Test Bench .. 15

Figure 11: Semantic Backplane .. 19

Figure 12: CyPhy MetaModel .. 23

Figure 13: Semantic Anchoring Framework ... 26

1

1. Motivation and Design Rationale
The Cyber Physical Modeling Language, referred to as CyPhyML or CyPhy, is a Domain

Specific Modeling Language designed for modeling, evaluation, and synthesis of Cyber-Physical

Systems (CPS). The development of CyPhy was driven by the goals of AVM program towards

accelerating design and synthesis of complex CPS. The design of CyPhy is tightly coupled with

the design methodology implemented by the META project in support of the AVM program

goals. We briefly revisit the key principles of the META design methodology (discussed

comprehensively in the Executive Summary and Program Overview sections) to elucidate the

requirements for CyPhy.

● Component-Based Design enables design cycle compression by reuse of existing

technology and knowledge, encapsulated in integratable and customizable components

that can be rapidly used in a design. Components in CPS are heterogeneous, span

multiple domains (physical – thermal, mechanical, electrical, fluid, and computational –

software, computing platforms), and require multiple models to represent the behavior,

geometry, and interfaces, at multiple levels of abstractions. Enabling component-based

design for CPS requires a modeling language that allows multi-domain, multi-model

representation of CPS components.

● Design Space Exploration entails a design methodology that allows a combinatorial

design consisting of many architecture and component options. The META design

methodology enables a designer to systematically engineer a flexible and comprehensive

design space for sub-systems and system that can be explored for satisfying product-

specific requirements. Furthermore, the design spaces for subsystems and systems are

assets that encapsulate design knowledge, which can be reused in a context different for

which it was originally created. A suite of computational methods that trade accuracy

with computation time for exploring the large design spaces, allow progressive

exploration and reduction of the design space, iteratively converging over to solutions of

interest given a set of requirements. Enabling design space exploration requires a

modeling language that can methodically represent design choices at multiple levels of

design hierarchy - systems, subsystems, and components.

● Executable Requirements allow tracking system design through quantitative metrics and

ensure that the system design continues to meet requirements as it undergoes evolution

and revisions. Enabling this capability requires modeling language constructs that allows

capturing requirements in a form that can be automatically evaluated, including the

context in which the requirement must be evaluated, the procedure and the method to

evaluate the requirement, and mechanism to extract metrics of interest from the

evaluation.

While these core tenets of the META design methodology shaped the conceptual design of

CyPhy, there were additional challenges and considerations that drove the implementation of

CyPhy discussed below.

2

1.1. Activities in META Design Flow
CyPhy has to support a range of design and analysis activities entailed by the META design

methodology as follows (see Figure 1).

1. Initial Architecture design involves modeling and rapid Exploration of early design space

sketched out with the system requirements. These activities in design flow require that

the modeling language includes concepts for modeling system design space and

constraints, enable representing the key architectural variants that can broadly support the

customer requirements. The early architecture exploration also requires low compute

intensity methods that can allow examination of a potentially very large set of design

options. The modeling language needs to support modeling low-resolution components to

enable coarse grain exploration.

2. The Integrated Multi-Physics and Cyber Design stage expands upon the broadly

identified architecture, and refines them with integrated design of physical and cyber

components and conducts relevant tradeoffs. These activities in addition to modeling of

the design space and constraints require dynamics modeling for progressively refined

performance simulation of the system. This phase also requires support for computational

modeling to analyze the behavior and interaction of software with physical components.

Geometry and geometry-driven analyses are central to the physical nature of CPS, and

consequently the modeling language suite needs to support CAD and derivative analysis

such as thermal, FEA, and allow evaluation of designs for manufacturability.

3. The Detailed Design stage involves further refinement, and analysis, of designs leading

towards production, which shifts the emphasis of modeling capabilities from design space

to domain model elaboration.

3

Figure 1: META Language Suite

1.2. Heterogeneity of CPS Components
In addition to the diversity of the design and modeling activities, the modeling language needs to

facilitate representation of a diverse range of cyber physical components.

The components that constitute a typical cyber physical system such as a military ground vehicle

span a broad range from commodity physical components such as nuts and bolts, to large

complex dynamical components like Engines, Transmissions, Sensors, Actuators, and

Controllers. These components can broadly be categorized as:

1. Physical – components that consist purely of electro-hydro-mechanical elements with

little or no programmability. Examples of such components include transmissions,

differentials, gears, clutches, starter-generators, servos, among others. These can be

further categorized as: functional – implementing a function in the design, or

interconnect – that act as facilitator for physical energy flow or provide linkages such as

nuts, bolts, pipes, and tubes.

2. Cyber – components are software components that require a computer processor to run,

and implement some function such as the Vehicle Management Software, or controller

algorithms implemented in software.

3. Cyber-Physical – components that cross-cut cyber and physical domains, such that they

are physical and implement some function, however, contain deeply embedded

4

computing and communication functions that enable configuration and control of the

designed function. Modern combustion engines are a good example of cyber-physical

components, in that they include programmable controllers that will interface with rest

of the vehicle management system over communication buses (such as CAN and

TT/FlexRay), and allow optimizing torque delivery by controlling air/fuel mixture and

valve timing for optimal combustion.

Figure 2: Cyber-Physical Components

The examples depicted in Figure 2 above also illustrate the fact that CPS components span

across different energy and physics domains. A combustion engine, for example, turns chemical

energy into rotational mechanical energy; a battery delivers electrical energy from stored

chemical energy, while an integrated starter generator (ISG) delivers mechanical rotational

energy from electrical energy.

Moreover, the components depicted in Figure 2 require multiple models to describe and analyze

their behavior. A combustion engine has a CAD model which represents the physical geometry

including mass distribution, center-of-gravity, a dynamics model will describe the performance

of the engine as a function of the driver and torque demand, a thermal model will describes heat

generation, distribution, and dissipation as a function of the driver and torque demand.

Furthermore, these different models are often developed in different domain tools i.e.

ProE/CREO or SolidWorks tools are used for CAD modeling, while Dymola and Simulink might

be used for modeling dynamics. Often these models constitute an asset base of different

5

engineering organizations, and have been developed with significant time and resource

investment.

These motivating and constraining factors had a strong impact on the design of CyPhy. CyPhy

had to be designed to represent components that are “Heterogeneous, Multi-Physics, and Multi-

Model”, in such a way that it could leverage and integrate existing model assets created in

domain tools.

1.3. Approach to Model Integration
The need to integrate multiple models, at different abstraction levels, and often created in

different tools required a systematic approach to model integration. CyPhy was engineered as a

Model Integration Language, which in essence is a “thin” wrapping language that wraps the

domain models and exports only the key interface and parameters that are relevant for integration

(see Figure 3). The wrapping maintains the link to the domain model – to allow integration in the

domain tool. The integration language itself has a very small set of native modeling constructs by

design. The native constructs of the language includes concepts such as hierarchical ported

modules and interconnects, structured design spaces, and includes a variety of meta-model

composition operators which enables systematic integration across different domain modeling

languages.

Figure 3: CyPhy as a Model Integration Language

The integration is done by abstracting the key properties and interfaces from the domain models

that are relevant for integration across domains. These constitute the key variability’s, or design

parameters that must be reasoned about in a multi-domain context. For example, when modeling

6

system architecture the detailed and exact geometry may not be important, however, the key

concepts of relevance are the join interfaces, surfaces, and constraints with which components

must be physically attached to each other. A linkage of the abstractions and modeling concepts

automatically enables the projection from architecture models back into the domain models.

The Tools and Frameworks depicted in the figure above are rich engineering infrastructures that

have been developed with significant investment, and have accumulated a large volume of

Design Assets, Intellectual Property, and Designer Expertise. The Model Integration Language

approach enables reuse of these assets in the form of a Component Library, and when systems

are built using the components, the Model Integration Language approach allows projecting the

integrated models back into to the Domain Tools and Frameworks to analyze, visualize and

refine the design using domain-specific tools.

A model integration language approach also allows the opportunistic linkage and additions of

new design languages on demand, enabling an open language framework that allows for the

adaptation of languages to accommodate evolving needs of design flows.

A major challenge in realizing a model integration approach, relates to the heterogeneous

semantics of the integrated modeling languages. CyPhy addresses this challenge by formally

specifying the semantics of the integrated domain languages, as well as formally specifying the

composition semantics. The semantics are specified using FORMULA, a constraint logic

programming environment, developed at Microsoft Research. FORMULA allows specification

and reasoning over well formed-ness of domain composition.

2. CyPhy Language Taxonomy

With this pretext, now we examine the CyPhy language and its core concepts - the semantics and

usage in CPS design. The functional taxonomy of CyPhy spans three key areas: 1) Components,

2) Designs and Design Spaces, and 3) Test Benches.

2.1. Components
Components in CyPhy are the basic units for composing system design. Components are self-

contained models representing a physical or software part of the system. As an atomic

component, they are not intended to be further subdivided, at least at the level of representation

in CyPhy, but are used as a standalone part (see sample CyPhy component representation in

Figure 4).

Figure 4: Example CyPhy Component

7

The component model represents several things about the actual component, including its

physical representations and connections, its dynamic behavior, and numerical properties. The

figure above shows an architectural view of a Damper component, symbolically represented as a

rounded rectangle. We should note that CyPhy does not mandate a specific iconic visualization -

rather the tool that implements the CyPhy language (GME in this case; in the future a browser-

based version with better visualization is currently in development) as well as the authors of the

component model are free to provide and render their own preferred iconic visualization. The

figure above also renders the interfaces of the components as port objects that span different

aspects: structural (threaded pin & hole), dynamics (flange_a/b), and parameters (damping

constant, etc.). These aspects are:

Figure 5: Example Structural Aspect of a CyPhy Component Model

- Physical implementation: The components have a 3D solid representation, and various

physical properties, such as mass, center of gravity, etc. As the components will be

interconnected into assemblies, subsystems and systems, the interfaces are carefully

defined to permit composition of models. The physical properties of the model are

shown in the Structural Aspect of the model (see Figure 5).

- Dynamics: The component has behaviors in one or more energy domains (e.g. Electrical,

Thermal, Mechanical-Rotational, Mechanical-Translational, Hydraulic, etc.). Dynamics

is expressed in the Modelica language, which uses a mix of Causal (directional input or

output is assigned to each port) and Acausal (power flows either direction based on its

context, as in most physical systems). These energy-transfer properties of the model are

shown in the Dynamics Aspect of the model (see Figure 6).

- Cyber: The software is a critical part of the cyber-physical system design, with many

components having a physical, dynamic, and software implementation. The Cyber aspect

captures the software representation. The Cyber aspect is intended primarily for

specifying controller logic for the system. Controllers can be specified in a combination

of state diagrams and signal flow. Software is automatically generated from these

models.

8

Figure 6: Example Dynamics Aspect of a CyPhy Component Model

2.1.1. Component Metadata

The component metadata captures attributes pertaining to the components physical or behavioral

characteristics - for example: mass of an engine, or torque curve. Component metadata can be

accessed by model composers and used to evaluate analytical constraints or compute system

properties. In CyPhy, we support two variants of component metadata: (1) Property, and (2)

Parameter described below.

● Property - A Property is a value provided by or associated with a component, such as

material, mass, or an attribute associated with its maturity, e.g. TRL. Properties can be

fixed, or could admit an uncertainty bound with a distribution. For parametrically

variable components (see parameter description below), properties can be variable and

algorithmically associated with parameters. Properties can also be scalar or vector, and

have a unit associated with them. CyPhy employs a standard unit system based on

NASA’s QUDT unit ontology.

● Parameter - A Parameter is a mechanism to capture component variability, allowing

customization for a specific instantiation or use. For example, a variable-length drive-

shaft component can be represented with a length parameter that can be configured for a

specific use. The parameters are largely similar to properties from a specification

standpoint and inherit from a common base class, are associated with a unit, and have a

specified default value as well as a validity range. Design space exploration tools use

component parameters for tuning or optimization of a design, or adaptation of a

component for a specific use.

2.1.2. Component Interfaces

Component interfaces play a very important role in the definition of a component. They define

the mechanism through which components connect and compose with other components. In

CyPhy, a key design decision is to allow interfaces that aggregate multiple domain interfaces.

These aggregated interfaces are referred to as Connectors. While it is preferred that component

9

designers expose only aggregated Connector type of interfaces, the language still allows the

flexibility of exposing domain interfaces directly. Component Interfaces also significantly

influence the usability of components, as a functional interpretation of the interface can be

communicate through an intuitive interface name that can guide the user in correctly connecting

the component in a system. The following concepts are used to define component interfaces in

CyPhy:

Connector_Interface - Connectors are an aggregation concept that allows aggregation and

abstraction of multiple domain connections, providing a single connection to capture all of the

constituent domain semantics in a single logical connection.

Power_Interface - Power Interfaces capture the lumped parameter dynamics interface,

representing the transfer of power (includes mechanical translation/rotation, multibody

movement, electrical, thermal, hydraulic, etc.).

Signal_Interface - Signal Interfaces are causal, non-physical interface that represents information

flow within the system. This can be used to represent cyber signals.

Structural_Interface - The structural interface is an abstraction of the solid modeling/CAD

connectivity. Structural interfaces contain references to CAD “datum”, geometrical objects

including planes, axes, points, and coordinate systems. These constituent parts are used to

establish fully specified, integrated CAD assemblies.

Parameter_Interface - Parameter interfaces allow values to be passed between connectors.

Property_Interface - Property interfaces allow properties to be shared between components.

2.1.3. Domain Models

Domain models capture model artifacts specific to supported domain tools. The Domain models

in CyPhy are a wrapping construct that refers to the domain model in its native representation

language and tool. The Domain model exposes the core interface concepts that are used to map

into the Component interfaces and metadata. For example, the component power interface maps

directly into Modelica power ports. There are a set of domain models that are currently

supported, however this is a point of expansion for the language. In transition projects, several

new DomainModels have been added. The domain models are:

ModelicaModel - ModelicaModels capture the dynamics behavior in the Modelica language

syntax.

BondGraphModel - Bond Graph Models use the bond graph formalism for representing

component behavior. This domain model is mostly obsolete.

10

CyberDomainModel (SignalFlowModel) - Cyber domain models are a computational model that

operate upon causal signals. CyPhy relies on a Simulink/Stateflow representation, linked through

the ESMoL modeling language as its Cyber domain model representation.

CADModel - CAD models represent the solid model object for use in a CAD context.

CADModels are typically Creo or STEP.

ManufacturingModel - The Manufacturing Model contains the information needed by iFAB for

manufacturability analysis. These can span two distinct classes: 1) COTS parts - which only

require cost, and procurement information associated with it; and 2) Make parts - these are parts

that must be custom made by the iFAB (or other) foundry and require associated process

information.

CyPhy allows multiple domain models for each domain thereby enabling a multi-fidelity

representation of the component. In case there are multiple domain models, they are tagged with

fidelity tags. The fidelity tags are kept freeform to allow users, component modelers, and tool

developer’s flexibility in specification and usage, since there is currently no universally accepted

taxonomy of model fidelity.

In summary, components are multi-domain and multi-model, include interfaces for composition,

can be parameterized, and have properties for informational and analytical evaluation.

2.2. Design Spaces
Using components and assemblies allows the designer to capture a single design architecture,

with a single choice of components. This has several drawbacks:

■ Requirements often change during the design process, sometimes necessitating a

redesign.

■ Component and subsystem behavior is discovered during the design process, and the best

choice of architecture and components may not be apparent until late in the design

process.

■ The design is applicable to a single target use, and can require substantial rework for

other applications.

Instead, CyPhy offers the concept of a design space. The design space allows the models to

contain multiple alternatives for components and assemblies. Any component or assembly can

be substituted for another component or assembly with the same interface.

The editor offers a simple syntax for capturing design options. A design alternative container is

created with an interface matching a component and the component is placed inside and wired to

the external interfaces (there is a tool to automatically do this). Additional alternative

components (or assemblies) are added to the alternative design container.

11

The semantics of this construct are to choose one of the internal components in place of the

alternative container.

The design space is the combination of all options of all alternatives. Consequently, the design

space can get very large (i.e. design space size is computed as # Alt1 * # Alt2 * # Alt3 *...).

While this is a powerful mechanism to expand the range of designs under consideration, a

mechanism is needed to limit the design space to a manageable size. For this purpose, design

space constraints can be specified, and used by the Design Space Exploration Tool (DESERT)

(see Figure 7).

Figure 7: Example Design Space Alternative

Design space constraints are simple, static relationships that can be specified on the properties or

identities of components or assemblies in the design alternative space (see Figure 8 for a visual

example). Operations on the properties such as total weight and cost, thresholds on a component

property (e.g. TRL > 3), or identity (e.g. all wheel types must match – do not mix and match).

12

Figure 8: Example Constraints

The DESERT Tool uses scalable techniques to apply these constraints to very large design

spaces to rapidly prune the design space to a manageable size. Figure 9 below shows the design

space for the simple drivetrain. Prior to applying constraints, there are 288 configurations.

After, there are 48. Typical design spaces can easily reach 10 billion configurations. After

proper constraint application, these design spaces can be reduced to a number in the 1000’s.

Figure 9: Design Space Exploration. Before and After Constraint Application

Design space creation and exploration is a process of expansion and contraction of the design

space. It can be a powerful tool to build adaptable, flexible designs. The design space constructs

in CyPhy can be discussed with the following taxonomy.

DesignSpace - A Design Space is a container for creating designs with structural/discrete design

options, and captures system topology and hierarchy. Specifically, a Design Container can

contain other Design Containers (for Hierarchy), Components, and Connections between

components, and any properties/parameters necessary for customizing components.

13

Compound - A compound, also known as a Component Assembly, is a Design Container with a

fixed architecture, containing no design flexibility. A Component Assembly is a container for

components, other component assemblies, parameters, properties, and connections.

Alternatives - Alternatives are Design Containers that have a “choose one” semantic for all

objects in the container. This is useful for representing the need for a component or subsystem

within a design, where the decision is to be left to a later design stage.

Optionals - Optionals are Design Containers that capture a component that is not required within

a system. Based on constraint application, either the component will be expressed, or all

connections will be left unconnected.

Components - Components are instances or references to AVM components in the design

container. Components are characterized with an ID, used for tracking component instances

across model transformations. Components have associated text description that is typically not

interpreted by any model composer.

Constraints - Constraints are logical operators that are used in the DESERT discrete design

exploration.

Connections - Connections are linkages between component interfaces (also known as

connectors). Connectors can also be present on ComponentAsemblies, DesignContainers, or

other test bench components. Connections can be sub-classed into following types:

Power_Connections - Power Connections are connections between domain power ports

in domain models and interface connectors.

Signal_Connections - Signal connections are connections between signal ports.

Structural_Connections - Structural connections are connections between structural

interfaces of components.

Parameter_Connections - Parameter and Property Connections are connections between

property connectors.

SimpleFormula - SimpleFormulas are mechanisms for a component assembly to use sets of

Properties or Parameters to compute Parameters of another component. SimpleFormulas can use

only basic arithmetic operators (such as +, -, /, or *).

CustomFormula - CustomFormulas are similar to SimpleFormulas, but allow complex equations

to be captured using a relational and arithmetic expression language.

14

2.3. Design Evaluation (Test Benches)
While application of constraints can eliminate design alternatives based on simple, static

properties, much of the system behavior (desirable and undesirable) emerges from the dynamic

interaction between components. These interactions occur across and between any and all of the

physical domains within the spectrum of the model coverage.

Evaluation of a model configuration can be done vs. requirements imposed on a system design.

Requirements are expressed in terms of Metrics that can be computed on the system models.

Examples of metrics include: Speed, Maximum Towing Force, Acceleration time from 0 to 60

MPH, etc. Requirements are tests on tests on these metrics, e.g.”the vehicle must accelerate

from 0 to 60 MPH in less than 8 seconds”. Typically, the conditions and scenario will be

specified in a requirement that translates to the definition of a CyPhy analysis needed, e.g. Level

ground, Pavement, and the scenario of Driver Throttle at 100% (see the example Test Bench in

Figure 10).

The system performance evaluation is specified in OpenMETA via a Test Bench. A Test Bench

is an executable specification of a requirement analysis. The parts of a Test Bench are:

■ Test Drivers, reproducing the stimulus to the system

■ Wraparound environment, providing the interfaces at the periphery of the system (e.g. the

ground interface with the tires, the external air, etc.)

■ Metrics evaluation, taking measurements of the system properties and converting into a

value of interest (metrics are also tied to requirements, which can convert the metric to a

design “score”)

■ The system under test, either a point design or a design space (in the case of a design

space, the Test Bench can be applied over the entire set of feasible designs)

15

Figure 10: Example Test Bench

The Test Benches are tied to specific workflows. Currently, CyPhy implements Test Benches

for:

■ Dynamics, using a lumped parameter model executed in the Modelica language.

Dynamics cover mechanical, electrical, hydraulic, and thermal domains.

■ Structural, using 3D CAD assemblies to evaluate the physical compatibility of parts,

locate potential interference, and compute physical properties such as Center of Gravity,

Bounding Box, and assembled location of specific points on the system.

■ Finite Element, using Finite element techniques to compute stress/strain, thermal

propagation, computational fluid dynamics, etc.

■ Mobility, using the NATO Reference Mobility Model to predict vehicle mobility based

on aggregate system properties.

■ Cyber, co-simulating dynamics with a time-based software/processor/network simulation.

■ Manufacturability, creating the 3D CAD files, a set of properties of each manufactured

join between parts, and an electronic Bill of Materials (BOM). From this design package,

iFAB can predict a cost and schedule to manufacture the system.

■ Complexity, evaluating the graph-energy complexity of the system based on its

component complexity and structure of its connections. The complexity metric will

correlate with system cost and schedule.

Test Benches also have a set of limits associated with part minimum/maximum parameters (such

as maximum torques on a drive shaft) and design limits associated with an assembly or the use of

a part in a system (such as minimum allowed battery charge). The limits are automatically

16

evaluated with each execution of a Test Bench. If limits are exceeded, the analysis results are

flagged and the Test Bench result can be ignored or otherwise modified or treated with less trust.

The following CyPhy concepts are used in definition of test benches:

Requirement Link - Requirement Links are a reference to a requirement object stored in a

requirements database, such as DOORS. The link indicates that this Test Bench computes

metrics that test the system against the Requirement. A Requirement Link can be associated with

all the supported CyPhy test bench types.

SystemUnderTest - The System Under Test points to the system to be evaluated when executing

the Test Bench. The system can be a single design point, or a design space. All CyPhy Test

Bench classes are required to include a SystemUnderTest.

Connections - Connections within a Test Bench model allow interconnections between

TestComponents, SystemUnderTest, Metrics, and Parameters.

Metrics - Metrics define outputs of a test bench. Metrics are connected to outputs of a

SystemUnderTest, and cause the data to be recorded in the Metrics Output File.

Parameters - Parameters allow a SystemUnderTest parameter to be set within a Test Bench

model.

TestComponents - Test Components are special purpose components, similar to standard

components, but usable only within a Test Bench model.

2.3.1. Dynamics Test Benches

In addition to the common concepts referred above, Dynamics Test Benches also contain:

SolverSettings - Defines parameters for the Modelica solver for simulation duration, and solver

algorithm.

2.3.2. FEA Test Benches

In addition to the common concepts referred above, FEA Test Benches also contain:

AnalysisPoints - AnalysisPoints define points on a system under test that can be exposed external

to the Test Bench.

ForceLoad - ForceLoad allow the test bench to specify a force to be applied to the system under

test.

17

PolygonalSurface - PolygonalSurface allow definition of a surface, to be used with a ForceLoad

or DisplacementConstraint within a FEA solution.

DisplacementConstraints - DisplacementConstraints allow a surface to be held at a specified

location.

2.3.3. Verification Test Bench

In addition to the common concepts referred above, Verification test benches also contain:

VerificationCondition - contains the description of the property to be satisfied by the Verification

method.

2.3.4. Parametric Exploration Test Bench

Parametric exploration Test Benches are meta test benches in a sense that they perform

parameterized execution of other test benches. The specification involves two primary concepts:

1) Parameter Drivers - that specify how the parameter must be explored, and 2) Test Bench

References - the test bench that must be parametrically executed. There are three supported

classes of parameter drivers:

Optimizer - An optimizer driver object specifies a goal-seeking parameter driver. The optimizer

attributes include the optimizer type and optional code for a custom optimizer. The optimizer

contains:

● Design Variable - a port specifying parameter to vary, with min/max attributes

● Objective - a port for the parameter to optimize

● Optimizer Constraint - specification to minimize or maximize the objective

PCC Driver - A PCC driver specifies a probabilistic sampling of parameters. PCC driver

attributes include Senstivity Analysis and Uncertainty Propagation controls. The PCC driver

contains:

● ParameterDistributionUniform - a parameter to sweep with a uniform distribution, with

low and high limits

● ParameterDistributionNormal - a parameter to sweep with a Normal distribution, with

mean and standard deviation

● ParameterDistributionLogNormal - a parameter to sweep with a LogNormal distribution,

with log scale and shape parameter

● ParameterDistributionBeta - a parameter to sweep with a Beta distribution, with min,

max, beta, and alpha

Parameter Study Driver - The parameter study driver specifies a DOE study to compute a

surrogate model of the test bench under study. The parameter study has attributes including

DOE type (e.g. FullFactorial) and a surrogate type to compute (e.g. Neural Net, Kriging).

Parameter Studies contain:

18

● DesignVariable - a port for the parameters to vary, with min/max range

● Objective - a port for the parameters to explore.

2.4. Extending the CyPhy Language
The CyPhy language is designed for expansion. Expansion is achieved by adding to the

language in the following ways:

2.4.1. Components

Components can be extended by adding attributes, domain models, ports, and resources.

● Domain Models: Domain Models capture new behavioral or physical artifacts to be

associated with a component. These domain models will potentially contain domain-

specific attributes, text or values that capture information about the component.

● Resources: Resources capture pointers to artifacts that are saved in different files.

● Connection Ports: Ports capture domain-specific information or connectivity information

relevant to the component.

For example, several artifacts were added to the component for electronics design:

● Schematic Domain Model: this captures the relevant information about the schematic

symbol and PCB footprint of a circuit. In the EDA case, EagleCAD was the initial tool

supported. The component contained several text attributes for the symbol name,

reference designator, chip class, etc.

● Resources: the resource points to an EagleCAD schematic file, containing the data for the

electronic part.

● Ports: Schematic pins capture the parts where wires/PCB traces can be connected to the

chip. The ports contain the pin number and placement location on the schematic symbol.

2.4.2. Connectors

Connectors may require extension, adding domain-specific ports to the internals of the

connector. These ports are connected to the domain ports in the component’s Domain model.

By including the domain ports into the connector, no modifications are required for the

component assembly or design space models.

3. CyPhy Language Formalization

3.1. Semantic Backplane
The Semantic Backplane includes modeling languages, models, and tools for the semantic

integration of Domain Specific Tool Chain (DSTC) configurations. The semantic integration is

performed by the following (see Figure 11):

19

1. Metamodeling - defining structural and behavioral semantics of domain specific

modeling languages

2. Metamodel Analysis and Verification - composing and relating DSTC-level domain

specific modeling languages) and

3. Metagenerators - automatically generating model translators from formal specification of

relationship between modeling languages

Figure 11: Semantic Backplane

Tools and methods developed for the Semantic Backplane are not targeting the general

engineering users: these are for a relatively small group of specialized experts responsible for the

semantic integrity of the evolving domain specific tool chains.

An essential element of the Vanderbilt MIC tool suite is that most of the Semantic Backplane

tools are “metaprogrammable” and used both in the Semantic Backplane and DSTC levels. In the

following we summarize the delivered components. Metamodeling provides the formal

specification of the semantics of the META modeling language suite.

20

3.1.1. MetaModeling Languages

1. MetaGME++: the mature MIC metamodeling language MetaGME (a variant of UML

class diagrams and OCL) extended with generative constructs. MetaGME++ is used as

metamodeling language for all MIC metaprogrammable tools. It has well established

relationship with various standards, such as MOF, EMF, OWL and others.

2. FORMULA: constraint logic programming language developed by Microsoft Research.

FORMULA is used as formal language for defining the structural semantics of

MetaGME++ and domain specific modeling languages defined using MetaGME++.

(MSR and Vanderbilt ISIS collaborate in evolving FORMULA; e.g. current work

expands the logic used in FORMULA with metric first order linear temporal logic).

3. ASML: a language variant for the Abstract State Machine (ASM) formal framework. We

use ASMs as common semantic domain for specifying discrete behavioral semantics of

modeling languages. ASML was selected because of its availability in the Visual Studio

tool suite (we expect that in the future we migrate to FORMULA as the supporting theory

evolves). ASML-based behavioral semantics are operational specifications (as opposed to

denotational), therefore they are executable and suitable for generating reference traces.

4. DE: lumped parameter differential equations as a common denotational semantic domain

for a wide range of continuous time dynamics. We use a syntactic form that can be easily

transformed. DE’s provide a bridge towards symbolic mathematics tools developed for

order reduction. The provided semantics for continuous dynamics is independent from

simulation algorithms.

The metamodeling languages listed above are part of the deliverables. We expect that the

metamodeling languages will continue to evolve beyond this project as an overall consolidation

in the practical use cases for semantics. We are also investigating other alternatives such as BIP

(developed by Joseph Sifakis – 2008 Turing Award Laurate) for capturing interaction semantics

among cyber components.

3.1.2. Metamodels

Metamodels are models of domain specific modeling languages described using metamodeling

languages. Their goal is to capture the formal structural and behavioral semantics of modeling

languages. The Semantic Backplane includes the CyPhy Metamodel Library that integrates

semantic aspects of a given configuration of the META DSTC.

Being a model integration language, CyPhy includes a core set of language constructs for model

and design space integration as well as an evolving suite of abstracted (sub)languages imported

from various META tools. The abstracted sublanguages are the simplest possible well-formed

subsets of the domain specific modeling languages of constituent META tools, yet still sufficient

for capturing cross-domain interactions (structural and behavioral). Abstracting sublanguages

for multi-model integration from bloated and complex domain languages is an important step

toward making META DSTC-s practical.

At this point, the CyPhy Metamodel Library includes metamodels for the following

sublanguages:

21

1. ADML (Architecture Design Modeling Language): represents hierarchical component

architectures and typed interfaces. Precise relationship is being defined between ADML

and component modeling sublanguages of various standards or frequently used modeling

languages, such as SysML (in progress), AADL (planned) and Simulink/Stateflow. This

relationship is defined as model transformation in GReAT (the MIC tool suite graph

model transformation specification language) and also, in some cases, in FORMULA.

2. ADSML (Architecture Design Space Modeling Language): extends the design modeling

languages with constructs for design space modeling, allowing traditional design

languages to capture design spaces instead of just point designs. The extensions come in

the form of introducing design containers with model structure variability such as

Alternatives, Optional, and variable cardinality containment, as well as Parameterization

of design elements. Introduction of these design space extensions at all levels within the

design hierarchy provides a powerful and compact mechanism of representing very large

design spaces.

Beyond the core model and design space integration language elements, CyPhy has been

complemented with the following abstracted sublanguages imported from integrated tools:

1. Modelica Language: Modelica is a multi-(energy/physics) domain formalism for

representing lumped parameter dynamics of physical systems. A Modelica model can

represent energy flow across systems in an energy domain neutral manner. Modelica

models are also able to represent hybrid dynamics with the aid of if-else and switch

constructs and support derivation of causality relation across systems.

2. Simulink/Stateflow Interface Language: The cyber aspects, specifically the controller

design, are captured using Simulink/Stateflow models. The CyPhy metamodel integrates

an abstracted Simulink/Stateflow metamodel, capturing the input, output, and parametric

interface of Simulink models and defines associations with CyPhy components and

component interfaces.

3. CAD Constraint ML: The CAD constraint modeling language represents geometrical

constraints (axial alignment, surface placement), between CAD components (linked into

CyPhy components) and allows derivation of CAD assemblies with a network of

geometric constraints.

4. Manufacturing (Cost) ML: The manufacturing language represents manufacturing cost

drivers for buy and make parts. These drivers include factors such as parts types,

complexity, and counts, join types, complexity, and counts for part assemblies. The

Manufacturing ML is integrated within CyPhyML allowing associating manufacturing

cost parameters with CyPhy components.

The metamodels above are represented in MetaGME++ and translated for verification and

validation to FORMULA.

22

3.1.3. Metamodeling Tools

1. Generic Modeling Environment (GME): Vanderbilt’s metaprogrammable modeling tool

is the modeling environment for MetaGME++. Except the newly implemented support

for the generative extension of MetaGME, the tool is mature and has been tested in major

academic and industrial projects. GME is open source and distributed for research as well

as commercial use.

2. Unified Data Model (UDM): is a metaprogrammable API tool that provides API-s to

programmatically manipulate domain-specific models built using GME (persisted in

GME’s native format or conformant XML). UDM is open source, has multiple

programming language support (Java, C++, .net, Python), and is mature and tested in

various academic and industrial projects.

3. GReAT: is a Graphical modeling environment (and associated toolset) for formally

defining (modeling) Model Transformations as Graph Rewriting specification over

Domain Meta Models. The model transformations defined with GReAT can be

interpretively executed for rapid prototyping, or compiled into executable specifications

for performance. The formal definition provides opportunities for verifying the

transformation, and allows for systematic evolution of the model transformation as the

domain metamodels evolve.

3.2. Formal Specification of CyPhy
In this section, we discuss the formalization of the Cyber-Physical Systems Modeling Language.

CyPhyML is the composition of several sub-languages, such as a language for describing the

composition of CPS components, a language for describing design-spaces with multiple choices,

and others. In the following, we discuss only the composition sub-language and by CyPhyML we

refer to this language. The GME meta-model of CyPhyML is shown in Figure 12.

Components are the main building blocks of CyPhyML. Components represent physical or

computational elements with ports on their interfaces. Component assemblies are used for

building composite structures by composing components and other component assemblies.

Component assemblies also facilitate encapsulation and port hiding. There are two types of ports

in CyPhyML: acausal power ports for representing physical interaction points, and causal signal

ports for representing information flow between components. Both the physical and information

flows are interpreted over the continuous time-domain. CyPhyML distinguishes power ports by

types, such as electrical power ports, mechanical power ports, hydraulic power ports and thermal

power ports.

23

Figure 12: CyPhy MetaModel

Formally, a CyPhyML model M is a tuple M ≡ {C, A, P, contain, portOf, EP, ES} with the

following interpretation:

● C is a set of components,

● A is a set of component assemblies,

● D = C ∪ A is the set of design elements,

● P is the union of the following sets of ports: ProtMech is a set of rotational mechanical

power ports, PtransMech is a set of translational mechanical power ports, Pmultibody is a set of

multi-body power ports, Phydraulic is a set of hydraulic power ports, Pthermal is a set of

thermal power ports, Pelectrical is a set of electrical power ports, Pin is a set of continuous-

time input signal ports, Pout is a set of continuous-time output signal ports. Furthermore,

PP is the union of all the power ports and PS is the union of all the signal ports,

● contain : D → A∗ is a containment function, whose range is A∗ = A ∪ {root}, the set of

design elements extended with a special root element root,

● portOf : P → D is a port containment function, which uniquely determines the container

of any port,

● EP ⊆ PP × PP is the set of power flow connections between power ports,

● ES ⊆ PS × PS is the set of information flow connections between signal ports.

We can formalize this language using the following algebraic data types:

// Components, component assemblies and design elements

Component ::= new (name: String, ..., id:Integer).

ComponentAssembly ::= new (name: String, ..., id:Integer).

DesignElement ::= Component + ComponentAssembly.

// Components of a component assembly

ComponentAssemblyToCompositionContainment ::=

 (src:ComponentAssembly, dst:DesignElement).

// Power ports

TranslationalPowerPort ::= new (..., id:Integer).

RotationalPowerPort ::= new (..., id:Integer).

24

ThermalPowerPort ::= new (..., id:Integer).

HydraulicPowerPort ::= new (..., id:Integer).

ElectricalPowerPort ::= new (..., id:Integer).

// Signal ports

InputSignalPort ::= new (..., id:Integer).

OutputSignalPort ::= new (..., id:Integer).

// Ports of a design element

DesignElementToPortContainment ::= new (src:DesignElement, dst:Port).

// Union types for ports

Port ::= PowerPortType + SignalPortType.

MechanicalPowerPortType ::= TranslationalPowerPort

 + RotationalPowerPort.

PowerPortType ::= MechanicalPowerPortType + ThermalPowerPort

 + HydraulicPowerPort

 + ElectricalPowerPort.

SignalPortType ::= InputSignalPort + OutputSignalPort.

// Connections of power and signal ports

PowerFlow ::=

 new (name:String,src:PowerPortType,dst:PowerPortType,...).

InformationFlow ::=

 new (name:String,src:SignalPortType,dst:SignalPortType,...).

3.2.1. Structural Semantics

Next, we formalize the structural semantics of the language. A CyPhyML model is well-formed

if it does not contain any dangling ports, distant connections or invalid port connections, hence it

conforms to the domain:

conforms

no dangling(_),

no distant(_),

no invalidPowerFlow(_),

no invalidInformationFlow(_).

For this, we need to define a set of auxiliary rules as discussed next. Dangling ports are ports that

are not connected to any other ports:

dangling ::= (Port).

dangling(X) :- X is PowerPortType,

no { P | P is PowerFlow, P.src = X },

no { P | P is PowerFlow, P.dst = X }.

dangling(X) :- X is SignalPortType,

no { I | I is InformationFlow, I.src = X },

no { I | I is InformationFlow, I.dst = X }.

25

A distant connection connects two ports belonging to different components, such that the

components have different parents, and neither component is parent of the other one:

distant ::= (PowerFlow+InformationFlow).

distant(E) :-E is PowerFlow+InformationFlow,

DesignElementToPortContainment(PX,E.src),

DesignElementToPortContainment(PY,E.dst),

PX != PY,

ComponentAssemblyToCompositionContainment(PX,PPX),

ComponentAssemblyToCompositionContainment(PY,PPY),

PPX != PPY, PPX != PY, PX != PPY.

A power flow is valid if it connects power ports of same types:

validPowerFlow ::= (PowerFlow).

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:TranslationalPowerPort,

Y=E.dst, Y:TranslationalPowerPort.

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:RotationalPowerPort,

Y=E.dst, Y:RotationalPowerPort.

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:ThermalPowerPort,

Y=E.dst, Y:ThermalPowerPort.

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:HydraulicPowerPort,

Y=E.dst, Y:HydraulicPowerPort.

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:ElectricalPowerPort,

Y=E.dst, Y:ElectricalPowerPort.

If a power flow is not valid, it is invalid:

invalidPowerFlow ::= (PowerFlow).

invalidPowerFlow(E) :- E is PowerFlow, no validPowerFlow(E).

An information flow is invalid if a signal port receives signals from multiple sources, or an input

port is the source of an output port:

invalidInformationFlow ::= (InformationFlow).

invalidInformationFlow(X) :-X is InformationFlow,

26

Y is InformationFlow,

X.dst = Y.dst, X.src != Y.src.

invalidInformationFlow(E) :-E is InformationFlow,

X = E.src, X:InputSignalPort,

Y = E.dst, Y:OutputSignalPort.

Note that output ports can be connected to output ports.

3.2.2. Denotational Semantics

The denotational semantics of a language is described by a semantic domain and a mapping that

maps the syntactic elements of the language to this semantic domain. In this section, we specify a

semantic mapping from CyPhyML to the hybrid differential-difference equations semantic unit

defined elsewhere.

We use the semantic anchoring framework for the denotational semantic specification of

CyPhyML as shown in Figure 13.

Figure 13: Semantic Anchoring Framework

Acausal CPS modeling languages distinguish acausal power ports and causal signal ports. In

CyPhyML, each power port contributes two variables to the equations, and the denotational

semantics of CyPhyML is defined as equations over these variables. Signal ports transmit signals

with strict causality. Consequently, if we associate a signal variable with each signal port, the

variable of a destination port is enforced to denote the same value as the variable of the

27

corresponding source port. This relationship is one-way: the value of the variable at the

destination port cannot affect the source variable along the connection in question.

The semantic function for power ports is mapping power ports to pairs of continuous time

variables:

PP : PowerPort → cvar, cvar.

PP [[CyPhyPowerPort]] =

(cvar("CyPhyML_effort",CyPhyPowerPort.id),

cvar("CyPhyML_flow",CyPhyPowerPort.id)).

The semantic function of signal ports is mapping signal ports to a continuous time variables:

SP : SignalPort → cvar+dvar.

SP [[CyPhySignalPort]] =

cvar("CyPhyML_signal",CyPhySignalPort.id).

The semantics of power port connections is defined through their transitive closure. Using fixed-

point logic, we can easily express the transitive closure of connections as the least fixed point

solution for ConnectedPower. Informally, ConnectedPower(x,y) expresses that power ports x

and y are interconnected through one or more power port connections:

ConnectedPower ::= (src:CyPhyPowerPort, dst:CyPhyPowerPort).

ConnectedPower(x,y) :-PowerFlow(_,x,y,_,_), x:CyPhyPowerPort,

y:CyPhyPowerPort;

PowerFlow(_,y,x,_,_), x:CyPhyPowerPort, y:CyPhyPowerPort;

ConnectedPower(x,z), PowerFlow(_,z,y,_,_), y:CyPhyPowerPort;

ConnectedPower(x,z), PowerFlow(_,y,z,_,_), y:CyPhyPowerPort.

More precisely, Px = {y | ConnectedP ower(x, y)} is the set of power ports reachable from power

port x. The behavioral semantics of CyPhyML power port connections is defined by a pair of

equations generalizing the Kirchoff-equations. Their form is the following:

∀𝑥 ∈ 𝐶𝑦𝑃ℎ𝑦𝑃𝑜𝑤𝑒𝑟𝑃𝑜𝑟𝑡. (∑

𝑦∈{𝑦|𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑃𝑜𝑤𝑒𝑟(𝑥,𝑦)}

𝑒𝑦 = 0)

∀𝑥, 𝑦 (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑦) → 𝑒𝑥 = 𝑒𝑦)

We can formalize this the following way:

P : ConnectedPower → eq+addend.

28

P [[ConnectedPower]] =

eq(sum("CyPhyML_powerflow",flow1.id), 0)

addend(sum("CyPhyML_powerflow",flow1.id), flow1)

addend(sum("CyPhyML_powerflow",flow1.id), flow2)

eq(effort1, effort2)

where

x = ConnectedPower.src, y = ConnectedPower.dst, x != y,

DesignElementToPortContainment(cx,x), cx:Component,

DesignElementToPortContainment(cy,y), cy:Component,

PP [[x]] = (effort1,flow1),

PP [[y]] = (effort2,flow2).

3.2.3. Semantics of Signal Port Connections

A signal connection path (ConnectedSignal) is a directed path along signal connections. We can

use fixed-point logic to find the transitive closure by solving for the least fixed point of

ConnectedSignal. Informally, ConnectedSignal(x,y) expresses that there is a signal path (chain of

connections) from signal port x to signal port y.

ConnectedSignal ::= (CyPhySignalPort,CyPhySignalPort).

ConnectedSignal(x,y) :-InformationFlow(_,x,y,_,_),

x:CyPhySignalPort,

y:CyPhySignalPort.

ConnectedSignal(x,y) :-ConnectedSignal(x,z),

InformationFlow(_,z,y,_,_),

y:CyPhySignalPort.

More precisely, Px = {y | ConnectedSignal(x, y)} is the set of signal ports reachable from signal

port x. A signal connection (SignalConnection) is a connectedSignal such that its end-points are

signal ports of components (therefore leaving out any signal ports that are ports of component

assemblies).

SignalConnection ::= (src:CyPhySignalPort,dst:CyPhySignalPort).

SignalConnection(x,y) :-ConnectedSignal(x,y),

DesignElementToPortContainment(cx,x), cx:Component,

DesignElementToPortContainment(cy,y), cy:Component.

The behavioral semantics of CyPhy signal connections is defined as variable assignment. The

value of the variables associated with the source and the destination of a signal connection are

equal.

∀𝑥, 𝑦(𝑆𝑖𝑔𝑛𝑎𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑥, 𝑦) → 𝑠𝑥 = 𝑠𝑦)

29

S : SignalConnection → eq.

S [[SignalConnection]] =

eq(SP [[SignalConnection.dst]], SP [[SignalConnection.src]]).

3.3. Formalization of language integration
So far, we formally defined the semantics of the compositional elements of CyPhyML, but we

have not specified how components are integrated into CyPhyML.

In this section, we develop the semantics of the integration of external languages: a bond graph

language, the Modelica language, and the Embedded Systems Modeling Language (ESMoL)

language. Note that we can easily add other languages to the list following the same steps as

presented here. Note also that we include formalization of integration Bond Graphs, as it was

integrated in an earlier revision of CyPhyML, but it is no longer supported.

Bond Graphs are multi-domain graphical representations for physical systems describing the

structure of energy flows. Here, we consider an extended bond graph language that defines

power ports through which a bond graph component interacts with its environment. Each power

port is adjacent to exactly one bond; therefore, a power port represents a pair of power variables:

the power variables of its unique bond. The bond graph language we consider here also contains

output signal ports for measuring efforts and flows at bond graph junctions, and modulated bond

graph elements that are controlled by input signals fed to the bond graph through input signal

ports. Note that the effort and flow variables of the bond graph language are different from the

effort and flow variables of CyPhyML: they denote different entities in different physical

domains. The semantics of the languages formalize these differences precisely.

Modelica is an equation-based object-oriented language used for systems modeling and

simulation. Modelica supports component-based development through its model and connector

concepts. Models are components with internal behavior and a set of ports called connectors.

Models are interconnected by connecting their connector interfaces. A connector is a set of

variables (input, output, acausal flow or potential, etc.) and the connection of different

connectors define relations over their variables. In the following, we discuss the integration of a

restricted set of Modelica models in CyPhyML: we consider models that contain connectors that

consist of either exactly one input/output variable, or a pair of potential and flow variables.

The Embedded Systems Modeling Language (ESMoL) is a language and tool-suite for modeling

and implementing computational systems and hardware platforms. ESMoL consists of several

sub-languages for defining platform and software architectures, describing the deployment of

software on hardware and specifying the scheduling of execution. In the following, by ESMoL

we refer to the state chart variant sub-language of ESMoL that is used for modeling software

controllers. This sub-language is based on periodic time-triggered execution semantics, and its

components expose periodic discrete-time signal ports on their interface.

30

3.3.1. Integration of structure

The role of CyPhyML in the integration process is to establish meaningful and valid connections

between heterogeneous models. Component integration is an error prone task because of the

slight differences between different languages. For instance, during the formalization we found

the following discrepancies:

1. power ports have different meaning in different modeling languages,

2. even if the semantics is the same, there are differences in the naming conventions,

3. connecting the signals of ESMoL to the signals of CyPhyML needs a conversion between

discrete-time and continuous-time signals.

In order to formalize the integration of external languages, we extend CyPhyML with the

semantic interfaces of these languages. Hence, we need language elements for representing

models of these heterogeneous languages, their port structures, and the port mapping between the

ports and the corresponding CyPhyML ports.

We formalize the models and their containment in CyPhyML as follows:

BondGraphModel ::= new (URI:String, id:Integer).

ModelicaModel ::= new (URI:String, id:Integer).

ESMoLModel ::= new (URI:String, id:Integer, sampleTime:Real).

Model ::= BondGraphModel + ModelicaModel + ESMoLModel.

// A relation describing the containment of bond graph models in CyPhyML components

ComponentToBondGraphContainment ::= new (Component => BondGraphModel).

...

Note the fields of ESMoLModel: since ESMoL models are periodic discrete-time systems, we

need real values describing their period and initial phase in the continuous time world. The

interface ports and port mappings are the following:

// Bond graph power ports (and similarly for the other languages)

BGPowerPort ::= MechanicalDPort + MechanicalRPort + ...

...

// Port mappings for bond graph power ports (and similarly for other languages)

BGPowerPortMap ::= (src:BGPowerPort,dst:CyPhyPowerPort).

...

// All the power ports in CyPhyML and the integrated languages:

PowerPort ::= CyPhyPowerPort + BGPowerPort + ModelicaPowerPort.

// All the signal ports in CyPhyML and the integrated languages:

SignalPort ::= ElectricalSignalPort

+ BGSignalPort

+ ModelicaSignalPort

+ ESMoLSignalPort.

// List of all ports:

31

AllPort ::= PowerPort + SignalPort.

// Mapping from model ports to CyPhyML ports

PortMap ::= BGPowerPortMap

+ BGSignalPortMap

+ ModelicaPowerPortMap

+ ModelicaSignalPortMap

+ SignalFlowSignalPortMap.

An integrated model (that is, CyPhyML model integrated with other models) is well-formed if it

conforms to the original CyPhyML domain, and its port mappings are valid:

conforms no invalidPortMapping.

A port mapping is invalid if it connects incompatible ports, or the interconnected ports are not

part of the same CyPhyML component:

invalidPortMapping :- M is PortMap, no compatible(M).

invalidPortMapping :-M is BGPowerPortMap,

BondGraphToPortContainment(BondGraph,M.src),

DesignElementToPortContainment(CyPhyComponent,M.dst),

no ComponentToBondGraphContainment(CyPhyComponent,BondGraph).

...

// Compatible denotes that port mapping M is valid (i.e., the corresponding ports are

compatible)

compatible ::= (PortMap).

compatible(M) :- M is BGPowerPortMap(X,Y), X:MechanicalRPort,

Y:RotationalPowerPort.

...

3.3.2. Bond Graph integration

The semantics of bond graph power ports are explained by mapping to pairs of continuous-time

variables:

BGPP : BGPowerPort → cvar, cvar.

BGPP [[BGPowerPort]] =

(cvar("BondGraph_effort",BGPowerPort.id),

cvar("BondGraph_flow",BGPowerPort.id)).

The semantics of bond graph signal ports is explained by mapping to continuoustime variables:

BGSP : BGSignalPort → cvar.

BGSP [[BGSignalPort]] = cvar("BondGraph_signal",port.id).

32

The behavioral semantics of bond graph power port mappings for the hydraulic and thermal

domains is the equality of the associated port variables. We can formalize it with the following

rules:

BGP : BGPowerPortMap → eq+diffEq.

BGP [[BGPowerPortMap]] =

eq(cyphyEffort, bgEffort)

eq(cyphyFlow, bgFlow)

where

bgPort = BGPowerPortMap.src,

cyphyPort = BGPowerPortMap.dst,

bgPort : HydraulicPort + ThermalPort,

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow),

BGPP [[bgPort]] = (bgEffort, bgFlow).

In mechanical translational domain, the effort of CyPhyML power ports denote absolute position

and the flow denotes force, whereas for bond graphs the effort is force, and the flow is velocity.

In mechanical rotational domain, the effort of CyPhyML power ports denote absolute rotation

angle and the flow denotes torque, whereas for bond graphs the effort is torque and the flow is

angular velocity. Their interconnection in CyPhyML is formalized by the following equations:

BGP [[BGPowerPortMap]] =

diffEq(cyphyEffort, bgFlow)

eq(bgEffort, cyphyFlow)

where,

bgPort = BGPowerPortMap.src,

cyphyPort = BGPowerPortMap.dst,

bgPort : MechanicalDPort + MechanicalRPort,

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow),

BGPP [[bgPort]] = (bgEffort, bgFlow).

For the electrical domain, bond graph electrical power ports denote a pair of physical terminals

(electrical pins), while in the CyPhyML language they denote single electrical pins. In both

cases, the flow (the current) through the pins is the same; however, there are differences in the

interpretation of voltage. In the bond graph case, the effort variable belonging to the electrical

power port denotes the difference of the voltages between the two electrical pins. In the

CyPhyML case, the effort variable denotes absolute voltage (with respect to an arbitrary ground).

The semantics of electrical power port mapping is the equality of the flows and efforts, which

means that the negative terminal of the bond graph electrical power port is automatically

grounded to the CyPhyML ground:

33

BGP [[BGPowerPortMap]] =

eq(bgFlow, cyphyFlow)

eq(bgEffort, cyphyEffort)

where

bgPort = BGPowerPortMap.src,

cyphyPort = BGPowerPortMap.dst,

bgPort : ElectricalPort,

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow),

BGPP [[bgPort]] = (bgEffort, bgFlow).

Finally, the denotation of bond graph and CyPhyML signal port mappings is equality of the

interconnected port variables:

BGS : BGSignalPortMap → eq.

BGS [[BGSignalPortMap]] =

eq(BGSP [[BGSignalPortMap.src]], SP [[BGSignalPortMap.dst]]).

3.3.3. Modelica integration

The semantics of Modelica power ports are explained by mapping to pairs of continuous-time

variables:

MPP : ModelicaPowerPort → cvar,cvar.

MPP [[ModelicaPowerPort]] =

(cvar("Modelica_potential",ModelicaPowerPort.id),

cvar("Modelica_flow",ModelicaPowerPort.id)).

The semantics of Modelica signal ports is explained by mapping to continuous time variables:

MSP : ModelicaSignalPort → cvar.

MSP [[ModelicaSignalPort]] =

cvar("Modelica_signal",ModelicaSignalPort.id).

The semantics of Modelica and CyPhyML power port mappings is equality of the power

variables. Formally,

MP : ModelicaPowerPortMap → eq.

MP [[ModelicaPowerPortMap]] =

eq(cyphyEffort, modelicaEffort)

eq(cyphyFlow, modelicaFlow)

where

modelicaPort = ModelicaPowerPortMap.src,

cyphyPort = ModelicaPowerPortMap.dst,

34

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow),

MPP [[modelicaPort]] = (modelicaEffort, modelicaFlow).

The semantics of Modelica and CyPhyML signal port mappings is equality of the signal

variables.

MS : ModelicaSignalPortMap → eq.

MS [[ModelicaSignalPortMap]] = eq(MSP [[ModelicaSignalPortMap.src]],

SP [[ModelicaSignalPortMap.dst]]).

3.3.4. SignalFlow integration

The semantics of ESMoL signal ports is explained by mapping to discrete-time variables, and the

periodicity of the discrete variable is determined by the sample time of its container block.

ESP : ESMoLSignalPort → dvar, timing.

ESP [[ESMoLSignalPort]] = (Dvar, timing(Dvar, container.sampleTime, 0))

where,

Dvar = dvar("ESMoL_signal", ESMoLSignalPort.id),

BlockToSF_PortContainment(container,ESMoLSignalPort).

While signal ports in signal-flow have discrete-time semantics, signal ports in CyPhyML are

continuous-time. Thus, signal-flow output signals are integrated into CyPhyML by means of the

hold operator.

∀𝑥, 𝑦(𝑆𝑖𝑔𝑛𝑎𝑙𝐹𝑙𝑜𝑤𝑆𝑖𝑔𝑛𝑎𝑙𝑃𝑜𝑟𝑡𝑀𝑎𝑝(𝑥, 𝑦) → 𝑒𝑥 = ℎ𝑜𝑙𝑑(𝑒𝑥))

ES : SignalFlowSignalPortMap → hold+sample+timing.

ES [[SignalFlowSignalPortMap]] = hold(cyphySignal,signalflowSignal)

where,

signalflowPort = SignalFlowSignalPortMap.src,

cyphyPort = SignalFlowSignalPortMap.dst,

signalflowPort : OutSignal,

SP [[cyphyPort]] = cyphySignal,

ESP [[signalflowPort]] = (signalflowSignal,_).

For the opposite direction, we can use the sampling operator. The sample rate of the sampling

function is defined by the signal-flow block containing the port.

∀𝑥, 𝑦 (𝑆𝑖𝑔𝑛𝑎𝑙𝐹𝑙𝑜𝑤𝑆𝑖𝑔𝑛𝑎𝑙𝑃𝑜𝑟𝑡𝑀𝑎𝑝(𝑥, 𝑦) → 𝑠𝑥 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑟(𝑠𝑦))

35

ES [[SignalFlowSignalPortMap]] = sample(signalflowSignal,cyphySignal)

where

signalflowPort = SignalFlowSignalPortMap.src,

cyphyPort = SignalFlowSignalPortMap.dst,

signalflowPort : InSignal,

SP [[cyphyPort]] = cyphySignal,

ESP [[signalflowPort]] = (signalflowSignal,_).

3.3.5. Power Port Units

Next, we define the physical units for each of the physical power ports. The Units enumeration

contains all the supported physical units:

Units ::= {

"V", // Voltage

"A", // Ampere

"m", // meter

"N", // Newton

"N.m", // Newton−meter

"m/s", // meter/second

"rad", // radian

"rad/s",// radian/second

"kg/s", // kilogram/second

"Pa", // Pascal

"K", // Kelvin

"W", // Watt

"NA", // Not available

"J/kg", // Joule/kilogram

"Pa,J/kg",

"kg/s,W" // Modelica FlowPort

}.

PortUnit assigns two units to each power port: one to its effort variable, and one to its flow

variable:

PortUnit ::= [port:PowerPort ⇒ effort:Units, flow:Units].

PortUnit(x,"V","A") :- x is ElectricalPowerPort;

x is ElectricalPin;

x is ElectricalPort.

PortUnit(x,"m","N") :- x is TranslationalPowerPort;

x is TranslationalFlange.

PortUnit(x,"N","m/s") :- x is MechanicalDPort.

36

PortUnit(x,"rad","N.m") :- x is RotationalPowerPort;

x is RotationalFlange.

PortUnit(x,"N.m","rad/s") :- x is MechanicalRPort.

PortUnit(x,"kg/s","Pa") :- x is HydraulicPowerPort;

x is FluidPort;

x is HydraulicPort.

PortUnit(x,"K","W") :- x is ThermalPowerPort;

x is HeatPort;

x is ThermalPort.

PortUnit(x,"NA","NA") :- x is MultibodyFramePowerPort.

PortUnit(x,"Pa,J/kg","kg/s,W") :- x is FlowPort.

It would be an interesting future work to use these units to verify the consistency of the language,

in particular the consistency of the port mappings, where other modeling languages may use

different units.

