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1. Motivation and Design Rationale 
The Cyber Physical Modeling Language, referred to as CyPhyML or CyPhy, is a Domain 

Specific Modeling Language designed for modeling, evaluation, and synthesis of Cyber-Physical 

Systems (CPS). The development of CyPhy was driven by the goals of AVM program towards 

accelerating design and synthesis of complex CPS. The design of CyPhy is tightly coupled with 

the design methodology implemented by the META project in support of the AVM program 

goals. We briefly revisit the key principles of the META design methodology (discussed 

comprehensively in the Executive Summary and Program Overview sections) to elucidate the 

requirements for CyPhy. 

 

● Component-Based Design enables design cycle compression by reuse of existing 

technology and knowledge, encapsulated in integratable and customizable components 

that can be rapidly used in a design. Components in CPS are heterogeneous, span 

multiple domains (physical – thermal, mechanical, electrical, fluid, and computational – 

software, computing platforms), and require multiple models to represent the behavior, 

geometry, and interfaces, at multiple levels of abstractions. Enabling component-based 

design for CPS requires a modeling language that allows multi-domain, multi-model 

representation of CPS components.  

● Design Space Exploration entails a design methodology that allows a combinatorial 

design consisting of many architecture and component options. The META design 

methodology enables a designer to systematically engineer a flexible and comprehensive 

design space for sub-systems and system that can be explored for satisfying product-

specific requirements. Furthermore, the design spaces for subsystems and systems are 

assets that encapsulate design knowledge, which can be reused in a context different for 

which it was originally created. A suite of computational methods that trade accuracy 

with computation time for exploring the large design spaces, allow progressive 

exploration and reduction of the design space, iteratively converging over to solutions of 

interest given a set of requirements. Enabling design space exploration requires a 

modeling language that can methodically represent design choices at multiple levels of 

design hierarchy - systems, subsystems, and components.   

● Executable Requirements allow tracking system design through quantitative metrics and 

ensure that the system design continues to meet requirements as it undergoes evolution 

and revisions. Enabling this capability requires modeling language constructs that allows 

capturing requirements in a form that can be automatically evaluated, including the 

context in which the requirement must be evaluated, the procedure and the method to 

evaluate the requirement, and mechanism to extract metrics of interest from the 

evaluation.  

While these core tenets of the META design methodology shaped the conceptual design of 

CyPhy, there were additional challenges and considerations that drove the implementation of 

CyPhy discussed below. 
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1.1. Activities in META Design Flow  
CyPhy has to support a range of design and analysis activities entailed by the META design 

methodology as follows (see Figure 1). 

1. Initial Architecture design involves modeling and rapid Exploration of early design space 

sketched out with the system requirements. These activities in design flow require that 

the modeling language includes concepts for modeling system design space and 

constraints, enable representing the key architectural variants that can broadly support the 

customer requirements. The early architecture exploration also requires low compute 

intensity methods that can allow examination of a potentially very large set of design 

options. The modeling language needs to support modeling low-resolution components to 

enable coarse grain exploration. 

2. The Integrated Multi-Physics and Cyber Design stage expands upon the broadly 

identified architecture, and refines them with integrated design of physical and cyber 

components and conducts relevant tradeoffs. These activities in addition to modeling of 

the design space and constraints require dynamics modeling for progressively refined 

performance simulation of the system. This phase also requires support for computational 

modeling to analyze the behavior and interaction of software with physical components. 

Geometry and geometry-driven analyses are central to the physical nature of CPS, and 

consequently the modeling language suite needs to support CAD and derivative analysis 

such as thermal, FEA, and allow evaluation of designs for manufacturability. 

3. The Detailed Design stage involves further refinement, and analysis, of designs leading 

towards production, which shifts the emphasis of modeling capabilities from design space 

to domain model elaboration.  
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Figure 1: META Language Suite 

 

1.2. Heterogeneity of CPS Components 
In addition to the diversity of the design and modeling activities, the modeling language needs to 

facilitate representation of a diverse range of cyber physical components. 

The components that constitute a typical cyber physical system such as a military ground vehicle 

span a broad range from commodity physical components such as nuts and bolts, to large 

complex dynamical components like Engines, Transmissions, Sensors, Actuators, and 

Controllers. These components can broadly be categorized as:  

1. Physical – components that consist purely of electro-hydro-mechanical elements with 

little or no programmability. Examples of such components include transmissions, 

differentials, gears, clutches, starter-generators, servos, among others. These can be 

further categorized as: functional – implementing a function in the design, or 

interconnect – that act as facilitator for physical energy flow or provide linkages such as 

nuts, bolts, pipes, and tubes. 

2. Cyber – components are software components that require a computer processor to run, 

and implement some function such as the Vehicle Management Software, or controller 

algorithms implemented in software. 

3. Cyber-Physical – components that cross-cut cyber and physical domains, such that they 

are physical and implement some function, however, contain deeply embedded 
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computing and communication functions that enable configuration and control of the 

designed function. Modern combustion engines are a good example of cyber-physical 

components, in that they include programmable controllers that will interface with rest 

of the vehicle management system over communication buses (such as CAN and 

TT/FlexRay), and allow optimizing torque delivery by controlling air/fuel mixture and 

valve timing for optimal combustion.  

 

 

Figure 2: Cyber-Physical Components 

The examples depicted in Figure 2 above also illustrate the fact that CPS components span 

across different energy and physics domains. A combustion engine, for example, turns chemical 

energy into rotational mechanical energy; a battery delivers electrical energy from stored 

chemical energy, while an integrated starter generator (ISG) delivers mechanical rotational 

energy from electrical energy. 

Moreover, the components depicted in Figure 2 require multiple models to describe and analyze 

their behavior. A combustion engine has a CAD model which represents the physical geometry 

including mass distribution, center-of-gravity, a dynamics model will describe the performance 

of the engine as a function of the driver and torque demand, a thermal model will describes heat 

generation, distribution, and dissipation as a function of the driver and torque demand. 

Furthermore, these different models are often developed in different domain tools i.e. 

ProE/CREO or SolidWorks tools are used for CAD modeling, while Dymola and Simulink might 

be used for modeling dynamics. Often these models constitute an asset base of different 



 
5 

engineering organizations, and have been developed with significant time and resource 

investment. 

These motivating and constraining factors had a strong impact on the design of CyPhy. CyPhy 

had to be designed to represent components that are “Heterogeneous, Multi-Physics, and Multi-

Model”, in such a way that it could leverage and integrate existing model assets created in 

domain tools. 

1.3. Approach to Model Integration 
The need to integrate multiple models, at different abstraction levels, and often created in 

different tools required a systematic approach to model integration. CyPhy was engineered as a 

Model Integration Language, which in essence is a “thin” wrapping language that wraps the 

domain models and exports only the key interface and parameters that are relevant for integration 

(see Figure 3). The wrapping maintains the link to the domain model – to allow integration in the 

domain tool. The integration language itself has a very small set of native modeling constructs by 

design. The native constructs of the language includes concepts such as hierarchical ported 

modules and interconnects, structured design spaces, and includes a variety of meta-model 

composition operators which enables systematic integration across different domain modeling 

languages.  

 

Figure 3: CyPhy as a Model Integration Language 

The integration is done by abstracting the key properties and interfaces from the domain models 

that are relevant for integration across domains. These constitute the key variability’s, or design 

parameters that must be reasoned about in a multi-domain context. For example, when modeling 
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system architecture the detailed and exact geometry may not be important, however, the key 

concepts of relevance are the join interfaces, surfaces, and constraints with which components 

must be physically attached to each other.  A linkage of the abstractions and modeling concepts 

automatically enables the projection from architecture models back into the domain models.  

The Tools and Frameworks depicted in the figure above are rich engineering infrastructures that 

have been developed with significant investment, and have accumulated a large volume of 

Design Assets, Intellectual Property, and Designer Expertise. The Model Integration Language 

approach enables reuse of these assets in the form of a Component Library, and when systems 

are built using the components, the Model Integration Language approach allows projecting the 

integrated models back into to the Domain Tools and Frameworks to analyze, visualize and 

refine the design using domain-specific tools. 

A model integration language approach also allows the opportunistic linkage and additions of 

new design languages on demand, enabling an open language framework that allows for the 

adaptation of languages to accommodate evolving needs of design flows. 

A major challenge in realizing a model integration approach, relates to the heterogeneous 

semantics of the integrated modeling languages. CyPhy addresses this challenge by formally 

specifying the semantics of the integrated domain languages, as well as formally specifying the 

composition semantics. The semantics are specified using FORMULA, a constraint logic 

programming environment, developed at Microsoft Research. FORMULA allows specification 

and reasoning over well formed-ness of domain composition. 

2. CyPhy Language Taxonomy 

With this pretext, now we examine the CyPhy language and its core concepts - the semantics and 

usage in CPS design.   The functional taxonomy of CyPhy spans three key areas: 1) Components, 

2) Designs and Design Spaces, and 3) Test Benches. 

2.1. Components 
Components in CyPhy are the basic units for composing system design. Components are self-

contained models representing a physical or software part of the system.  As an atomic 

component, they are not intended to be further subdivided, at least at the level of representation 

in CyPhy, but are used as a standalone part (see sample CyPhy component representation in 

Figure 4). 

 

Figure 4: Example CyPhy Component 
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The component model represents several things about the actual component, including its 

physical representations and connections, its dynamic behavior, and numerical properties.  The 

figure above shows an architectural view of a Damper component, symbolically represented as a 

rounded rectangle. We should note that CyPhy does not mandate a specific iconic visualization - 

rather the tool that implements the CyPhy language (GME in this case; in the future a browser-

based version with better visualization is currently in development) as well as the authors of the 

component model are free to provide and render their own preferred iconic visualization. The 

figure above also renders the interfaces of the components as port objects that span different 

aspects: structural (threaded pin & hole), dynamics (flange_a/b), and parameters (damping 

constant, etc.).  These aspects are: 

 

Figure 5: Example Structural Aspect of a CyPhy Component Model 

- Physical implementation: The components have a 3D solid representation, and various 

physical properties, such as mass, center of gravity, etc.  As the components will be 

interconnected into assemblies, subsystems and systems, the interfaces are carefully 

defined to permit composition of models.  The physical properties of the model are 

shown in the Structural Aspect of the model (see Figure 5).   

- Dynamics: The component has behaviors in one or more energy domains (e.g. Electrical, 

Thermal, Mechanical-Rotational, Mechanical-Translational, Hydraulic, etc.).  Dynamics 

is expressed in the Modelica language, which uses a mix of Causal (directional input or 

output is assigned to each port) and Acausal (power flows either direction based on its 

context, as in most physical systems). These energy-transfer properties of the model are 

shown in the Dynamics Aspect of the model (see Figure 6).   

- Cyber:  The software is a critical part of the cyber-physical system design, with many 

components having a physical, dynamic, and software implementation.  The Cyber aspect 

captures the software representation.   The Cyber aspect is intended primarily for 

specifying controller logic for the system.  Controllers can be specified in a combination 

of state diagrams and signal flow.  Software is automatically generated from these 

models.  
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Figure 6: Example Dynamics Aspect of a CyPhy Component Model 

 

2.1.1. Component Metadata 

The component metadata captures attributes pertaining to the components physical or behavioral 

characteristics - for example: mass of an engine, or torque curve. Component metadata can be 

accessed by model composers and used to evaluate analytical constraints or compute system 

properties. In CyPhy, we support two variants of component metadata: (1) Property, and (2) 

Parameter described below.   

● Property - A Property is a value provided by or associated with a component, such as 

material, mass, or an attribute associated with its maturity, e.g. TRL. Properties can be 

fixed, or could admit an uncertainty bound with a distribution. For parametrically 

variable components (see parameter description below), properties can be variable and 

algorithmically associated with parameters. Properties can also be scalar or vector, and 

have a unit associated with them. CyPhy employs a standard unit system based on 

NASA’s QUDT unit ontology. 

● Parameter - A Parameter is a mechanism to capture component variability, allowing 

customization for a specific instantiation or use. For example, a variable-length drive-

shaft component can be represented with a length parameter that can be configured for a 

specific use. The parameters are largely similar to properties from a specification 

standpoint and inherit from a common base class, are associated with a unit, and have a 

specified default value as well as a validity range. Design space exploration tools use 

component parameters for tuning or optimization of a design, or adaptation of a 

component for a specific use. 

2.1.2. Component Interfaces 

Component interfaces play a very important role in the definition of a component. They define 

the mechanism through which components connect and compose with other components. In 

CyPhy, a key design decision is to allow interfaces that aggregate multiple domain interfaces. 

These aggregated interfaces are referred to as Connectors. While it is preferred that component 
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designers expose only aggregated Connector type of interfaces, the language still allows the 

flexibility of exposing domain interfaces directly. Component Interfaces also significantly 

influence the usability of components, as a functional interpretation of the interface can be 

communicate through an intuitive interface name that can guide the user in correctly connecting 

the component in a system. The following concepts are used to define component interfaces in 

CyPhy: 

 

Connector_Interface - Connectors are an aggregation concept that allows aggregation and 

abstraction of multiple domain connections, providing a single connection to capture all of the 

constituent domain semantics in a single logical connection.  

   

Power_Interface - Power Interfaces capture the lumped parameter dynamics interface, 

representing the transfer of power (includes mechanical translation/rotation, multibody 

movement, electrical, thermal, hydraulic, etc.). 

 

Signal_Interface - Signal Interfaces are causal, non-physical interface that represents information 

flow within the system.  This can be used to represent cyber signals. 

 

Structural_Interface - The structural interface is an abstraction of the solid modeling/CAD 

connectivity.  Structural interfaces contain references to CAD “datum”, geometrical objects 

including planes, axes, points, and coordinate systems.  These constituent parts are used to 

establish fully specified, integrated CAD assemblies. 

 

Parameter_Interface - Parameter interfaces allow values to be passed between connectors. 

 

Property_Interface - Property interfaces allow properties to be shared between components.  

 

2.1.3. Domain Models 

Domain models capture model artifacts specific to supported domain tools. The Domain models 

in CyPhy are a wrapping construct that refers to the domain model in its native representation 

language and tool. The Domain model exposes the core interface concepts that are used to map 

into the Component interfaces and metadata. For example, the component power interface maps 

directly into Modelica power ports. There are a set of domain models that are currently 

supported, however this is a point of expansion for the language.  In transition projects, several 

new DomainModels have been added. The domain models are: 

 

ModelicaModel - ModelicaModels capture the dynamics behavior in the Modelica language 

syntax. 

 

BondGraphModel - Bond Graph Models use the bond graph formalism for representing 

component behavior.  This domain model is mostly obsolete. 
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CyberDomainModel (SignalFlowModel) - Cyber domain models are a computational model that 

operate upon causal signals. CyPhy relies on a Simulink/Stateflow representation, linked through 

the ESMoL modeling language as its Cyber domain model representation. 

 

CADModel - CAD models represent the solid model object for use in a CAD context.  

CADModels are typically Creo or STEP. 

 

ManufacturingModel - The Manufacturing Model contains the information needed by iFAB for 

manufacturability analysis. These can span two distinct classes: 1) COTS parts - which only 

require cost, and procurement  information associated with it; and 2) Make parts - these are parts 

that must be custom made by the iFAB (or other) foundry and require associated process 

information.   

 

CyPhy allows multiple domain models for each domain thereby enabling a multi-fidelity 

representation of the component. In case there are multiple domain models, they are tagged with 

fidelity tags. The fidelity tags are kept freeform to allow users, component modelers, and tool 

developer’s flexibility in specification and usage, since there is currently no universally accepted 

taxonomy of model fidelity.   

In summary, components are multi-domain and multi-model, include interfaces for composition, 

can be parameterized, and have properties for informational and analytical evaluation. 

2.2. Design Spaces 
Using components and assemblies allows the designer to capture a single design architecture, 

with a single choice of components.  This has several drawbacks: 

■ Requirements often change during the design process, sometimes necessitating a 

redesign. 

■ Component and subsystem behavior is discovered during the design process, and the best 

choice of architecture and components may not be apparent until late in the design 

process. 

■ The design is applicable to a single target use, and can require substantial rework for 

other applications. 

 

Instead, CyPhy offers the concept of a design space.  The design space allows the models to 

contain multiple alternatives for components and assemblies.  Any component or assembly can 

be substituted for another component or assembly with the same interface. 

The editor offers a simple syntax for capturing design options.  A design alternative container is 

created with an interface matching a component and the component is placed inside and wired to 

the external interfaces (there is a tool to automatically do this).  Additional alternative 

components (or assemblies) are added to the alternative design container. 
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The semantics of this construct are to choose one of the internal components in place of the 

alternative container.   

The design space is the combination of all options of all alternatives.  Consequently, the design 

space can get very large (i.e. design space size is computed as # Alt1 * # Alt2 * # Alt3 *...).  

While this is a powerful mechanism to expand the range of designs under consideration, a 

mechanism is needed to limit the design space to a manageable size.  For this purpose, design 

space constraints can be specified, and used by the Design Space Exploration Tool (DESERT) 

(see Figure 7). 

 

Figure 7: Example Design Space Alternative  

Design space constraints are simple, static relationships that can be specified on the properties or 

identities of components or assemblies in the design alternative space (see Figure 8 for a visual 

example).  Operations on the properties such as total weight and cost, thresholds on a component 

property (e.g. TRL > 3), or identity (e.g. all wheel types must match – do not mix and match). 
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Figure 8: Example Constraints 

The DESERT Tool uses scalable techniques to apply these constraints to very large design 

spaces to rapidly prune the design space to a manageable size.  Figure 9 below shows the design 

space for the simple drivetrain.  Prior to applying constraints, there are 288 configurations.  

After, there are 48.  Typical design spaces can easily reach 10 billion configurations. After 

proper constraint application, these design spaces can be reduced to a number in the 1000’s. 

 

Figure 9: Design Space Exploration.  Before and After Constraint Application  

Design space creation and exploration is a process of expansion and contraction of the design 

space.  It can be a powerful tool to build adaptable, flexible designs. The design space constructs 

in CyPhy can be discussed with the following taxonomy. 

DesignSpace - A Design Space is a container for creating designs with structural/discrete design 

options, and captures system topology and hierarchy.  Specifically, a Design Container can 

contain other Design Containers (for Hierarchy), Components, and Connections between 

components, and any properties/parameters necessary for customizing components. 
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Compound - A compound, also known as a Component Assembly, is a Design Container with a 

fixed architecture, containing no design flexibility. A Component Assembly is a container for 

components, other component assemblies, parameters, properties, and connections. 

 

Alternatives - Alternatives are Design Containers that have a “choose one” semantic for all 

objects in the container.  This is useful for representing the need for a component or subsystem 

within a design, where the decision is to be left to a later design stage. 

 

Optionals - Optionals are Design Containers that capture a component that is not required within 

a system.  Based on constraint application, either the component will be expressed, or all 

connections will be left unconnected. 

 

Components - Components are instances or references to AVM components in the design 

container. Components are characterized with an ID, used for tracking component instances 

across model transformations. Components have associated text description that is typically not 

interpreted by any model composer. 

 

Constraints - Constraints are logical operators that are used in the DESERT discrete design 

exploration. 

 

Connections - Connections are linkages between component interfaces (also known as 

connectors).  Connectors can also be present on ComponentAsemblies, DesignContainers, or 

other test bench components. Connections can be sub-classed into following types: 

 

Power_Connections - Power Connections are connections between domain power ports 

in domain models and interface connectors. 

 

Signal_Connections - Signal connections are connections between signal ports. 

 

Structural_Connections - Structural connections are connections between structural 

interfaces of components. 

 

Parameter_Connections - Parameter and Property Connections are connections between 

property connectors. 

 

SimpleFormula - SimpleFormulas are mechanisms for a component assembly to use sets of 

Properties or Parameters to compute Parameters of another component.  SimpleFormulas can use 

only basic arithmetic operators (such as +, -, /, or *). 

 

CustomFormula - CustomFormulas are similar to SimpleFormulas, but allow complex equations 

to be captured using a relational and arithmetic expression language. 
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2.3. Design Evaluation (Test Benches) 
While application of constraints can eliminate design alternatives based on simple, static 

properties, much of the system behavior (desirable and undesirable) emerges from the dynamic 

interaction between components.  These interactions occur across and between any and all of the 

physical domains within the spectrum of the model coverage. 

Evaluation of a model configuration can be done vs. requirements imposed on a system design.  

Requirements are expressed in terms of Metrics that can be computed on the system models.  

Examples of metrics include:  Speed, Maximum Towing Force, Acceleration time from 0 to 60 

MPH, etc.  Requirements are tests on tests on these metrics, e.g.”the vehicle must accelerate 

from 0 to 60 MPH in less than 8 seconds”.  Typically, the conditions and scenario will be 

specified in a requirement that translates to the definition of a CyPhy analysis needed, e.g. Level 

ground, Pavement, and the scenario of Driver Throttle at 100% (see the example Test Bench in 

Figure 10). 

The system performance evaluation is specified in OpenMETA via a Test Bench.  A Test Bench 

is an executable specification of a requirement analysis.  The parts of a Test Bench are: 

■ Test Drivers, reproducing the stimulus to the system 

■ Wraparound environment, providing the interfaces at the periphery of the system (e.g. the 

ground interface with the tires, the external air, etc.) 

■ Metrics evaluation, taking measurements of the system properties and converting into a 

value of interest (metrics are also tied to requirements, which can convert the metric to a 

design “score”) 

■ The system under test, either a point design or a design space (in the case of a design 

space, the Test Bench can be applied over the entire set of feasible designs) 
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Figure 10: Example Test Bench 

 
The Test Benches are tied to specific workflows.  Currently, CyPhy implements Test Benches 

for: 

■ Dynamics, using a lumped parameter model executed in the Modelica language.  

Dynamics cover mechanical, electrical, hydraulic, and thermal domains. 

■ Structural, using 3D CAD assemblies to evaluate the physical compatibility of parts, 

locate potential interference, and compute physical properties such as Center of Gravity, 

Bounding Box, and assembled location of specific points on the system. 

■ Finite Element, using Finite element techniques to compute stress/strain, thermal 

propagation, computational fluid dynamics, etc. 

■ Mobility, using the NATO Reference Mobility Model to predict vehicle mobility based 

on aggregate system properties. 

■ Cyber, co-simulating dynamics with a time-based software/processor/network simulation. 

■ Manufacturability, creating the 3D CAD files, a set of properties of each manufactured 

join between parts, and an electronic Bill of Materials (BOM). From this design package, 

iFAB can predict a cost and schedule to manufacture the system.  

■ Complexity, evaluating the graph-energy complexity of the system based on its 

component complexity and structure of its connections.  The complexity metric will 

correlate with system cost and schedule. 

Test Benches also have a set of limits associated with part minimum/maximum parameters (such 

as maximum torques on a drive shaft) and design limits associated with an assembly or the use of 

a part in a system (such as minimum allowed battery charge).  The limits are automatically 
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evaluated with each execution of a Test Bench.  If limits are exceeded, the analysis results are 

flagged and the Test Bench result can be ignored or otherwise modified or treated with less trust. 

The following CyPhy concepts are used in definition of test benches:  

 

Requirement Link - Requirement Links are a reference to a requirement object stored in a 

requirements database, such as DOORS. The link indicates that this Test Bench computes 

metrics that test the system against the Requirement. A Requirement Link can be associated with 

all the supported CyPhy test bench types. 

 

SystemUnderTest - The System Under Test points to the system to be evaluated when executing 

the Test Bench.  The system can be a single design point, or a design space. All CyPhy Test 

Bench classes are required to include a SystemUnderTest. 

 

Connections - Connections within a Test Bench model allow interconnections between 

TestComponents, SystemUnderTest, Metrics, and Parameters. 

 

Metrics - Metrics define outputs of a test bench. Metrics are connected to outputs of a 

SystemUnderTest, and cause the data to be recorded in the Metrics Output File. 

 

Parameters - Parameters allow a SystemUnderTest parameter to be set within a Test Bench 

model. 

 

TestComponents - Test Components are special purpose components, similar to standard 

components, but usable only within a Test Bench model. 

 

 

2.3.1. Dynamics Test Benches 

In addition to the common concepts referred above, Dynamics Test Benches also contain: 

 

SolverSettings - Defines parameters for the Modelica solver for simulation duration, and solver 

algorithm. 

 

2.3.2. FEA Test Benches 

In addition to the common concepts referred above, FEA Test Benches also contain: 

 

AnalysisPoints - AnalysisPoints define points on a system under test that can be exposed external 

to the Test Bench. 

 

ForceLoad - ForceLoad allow the test bench to specify a force to be applied to the system under 

test. 
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PolygonalSurface - PolygonalSurface allow definition of a surface, to be used with a ForceLoad 

or DisplacementConstraint within a FEA solution. 

 

DisplacementConstraints - DisplacementConstraints allow a surface to be held at a specified 

location. 

2.3.3. Verification Test Bench 

In addition to the common concepts referred above, Verification test benches also contain: 

 

VerificationCondition - contains the description of the property to be satisfied by the Verification 

method. 

2.3.4. Parametric Exploration Test Bench 

Parametric exploration Test Benches are meta test benches in a sense that they perform 

parameterized execution of other test benches. The specification involves two primary concepts: 

1) Parameter Drivers - that specify how the parameter must be explored, and 2) Test Bench 

References - the test bench that must be parametrically executed. There are three supported 

classes of parameter drivers: 

 

Optimizer - An optimizer driver object specifies a goal-seeking parameter driver. The optimizer 

attributes include the optimizer type and optional code for a custom optimizer. The optimizer 

contains: 

● Design Variable - a port specifying parameter to vary, with min/max attributes 

● Objective - a port for the parameter to optimize 

● Optimizer Constraint - specification to minimize or maximize  the objective 

 

PCC Driver - A PCC driver specifies a probabilistic sampling of parameters. PCC driver 

attributes include Senstivity Analysis and Uncertainty Propagation controls. The PCC driver 

contains: 

● ParameterDistributionUniform - a parameter to sweep with a uniform distribution, with 

low and high limits 

● ParameterDistributionNormal - a parameter to sweep with a Normal distribution, with 

mean and standard deviation 

● ParameterDistributionLogNormal - a parameter to sweep with a LogNormal distribution, 

with log scale and shape parameter 

● ParameterDistributionBeta - a parameter to sweep with a Beta distribution, with min, 

max, beta, and alpha 

 

Parameter Study Driver - The parameter study driver specifies a DOE study to compute a 

surrogate model of the test bench under study.  The parameter study has attributes including 

DOE type (e.g. FullFactorial) and a surrogate type to compute (e.g. Neural Net, Kriging).  

Parameter Studies contain: 
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● DesignVariable - a port for the parameters to vary, with min/max range 

● Objective - a port for the parameters to explore. 

 

2.4. Extending the CyPhy Language 
The CyPhy language is designed for expansion.  Expansion is achieved by adding to the 

language in the following ways: 

 

2.4.1. Components 

Components can be extended by adding attributes, domain models, ports, and resources.   

● Domain Models: Domain Models capture new behavioral or physical artifacts to be 

associated with a component.  These domain models will potentially contain domain-

specific attributes, text or values that capture information about the component. 

● Resources: Resources capture pointers to artifacts that are saved in different files. 

● Connection Ports: Ports capture domain-specific information or connectivity information 

relevant to the component. 

 

For example, several artifacts were added to the component for electronics design: 

● Schematic Domain Model: this captures the relevant information about the schematic 

symbol and PCB footprint of a circuit.  In the EDA case, EagleCAD was the initial tool 

supported. The component contained several text attributes for the symbol name, 

reference designator, chip class, etc. 

● Resources: the resource points to an EagleCAD schematic file, containing the data for the 

electronic part. 

● Ports: Schematic pins capture the parts where wires/PCB traces can be connected to the 

chip.  The ports contain the pin number and placement location on the schematic symbol. 

 

2.4.2. Connectors 

Connectors may require extension, adding domain-specific ports to the internals of the 

connector.  These ports are connected to the domain ports in the component’s Domain model.  

By including the domain ports into the connector, no modifications are required for the 

component assembly or design space models. 

3. CyPhy Language Formalization 

3.1. Semantic Backplane 
The Semantic Backplane includes modeling languages, models, and tools for the semantic 

integration of Domain Specific Tool Chain (DSTC) configurations. The semantic integration is 

performed by the following (see Figure 11): 
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1. Metamodeling - defining structural and behavioral semantics of domain specific 

modeling languages  

2. Metamodel Analysis and Verification - composing and relating DSTC-level domain 

specific modeling languages) and  

3. Metagenerators - automatically generating model translators from formal specification of 

relationship between modeling languages 

 

 

Figure 11: Semantic Backplane 

 

Tools and methods developed for the Semantic Backplane are not targeting the general 

engineering users: these are for a relatively small group of specialized experts responsible for the 

semantic integrity of the evolving domain specific tool chains. 

An essential element of the Vanderbilt MIC tool suite is that most of the Semantic Backplane 

tools are “metaprogrammable” and used both in the Semantic Backplane and DSTC levels. In the 

following we summarize the delivered components. Metamodeling provides the formal 

specification of the semantics of the META modeling language suite.   



 
20 

3.1.1. MetaModeling Languages 

1. MetaGME++: the mature MIC metamodeling language MetaGME (a variant of UML 

class diagrams and OCL) extended with generative constructs. MetaGME++ is used as 

metamodeling language for all MIC metaprogrammable tools. It has well established 

relationship with various standards, such as MOF, EMF, OWL and others.   

2. FORMULA: constraint logic programming language developed by Microsoft Research. 

FORMULA is used as formal language for defining the structural semantics of 

MetaGME++ and domain specific modeling languages defined using MetaGME++.  

(MSR and Vanderbilt ISIS collaborate in evolving FORMULA; e.g. current work 

expands the logic used in FORMULA with metric first order linear temporal logic). 

3. ASML: a language variant for the Abstract State Machine (ASM) formal framework. We 

use ASMs as common semantic domain for specifying discrete behavioral semantics of 

modeling languages. ASML was selected because of its availability in the Visual Studio 

tool suite (we expect that in the future we migrate to FORMULA as the supporting theory 

evolves). ASML-based behavioral semantics are operational specifications (as opposed to 

denotational), therefore they are executable and suitable for generating reference traces. 

4.  DE: lumped parameter differential equations as a common denotational semantic domain 

for a wide range of continuous time dynamics. We use a syntactic form that can be easily 

transformed. DE’s provide a bridge towards symbolic mathematics tools developed for 

order reduction. The provided semantics for continuous dynamics is independent from 

simulation algorithms. 

The metamodeling languages listed above are part of the deliverables. We expect that the 

metamodeling languages will continue to evolve beyond this project as an overall consolidation 

in the practical use cases for semantics. We are also investigating other alternatives such as BIP 

(developed by Joseph Sifakis – 2008 Turing Award Laurate) for capturing interaction semantics 

among cyber components. 

3.1.2. Metamodels 

Metamodels are models of domain specific modeling languages described using metamodeling 

languages. Their goal is to capture the formal structural and behavioral semantics of modeling 

languages. The Semantic Backplane includes the CyPhy Metamodel Library that integrates 

semantic aspects of a given configuration of the META DSTC. 

Being a model integration language, CyPhy includes a core set of language constructs for model 

and design space integration as well as an evolving suite of abstracted (sub)languages imported 

from various META tools. The abstracted sublanguages are the simplest possible well-formed 

subsets of the domain specific modeling languages of constituent META tools, yet still sufficient 

for capturing cross-domain interactions (structural and behavioral).  Abstracting sublanguages 

for multi-model integration from bloated and complex domain languages is an important step 

toward making META DSTC-s practical. 

At this point, the CyPhy Metamodel Library includes metamodels for the following 

sublanguages: 
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1. ADML (Architecture Design Modeling Language): represents hierarchical component 

architectures and typed interfaces. Precise relationship is being defined between ADML 

and component modeling sublanguages of various standards or frequently used modeling 

languages, such as SysML (in progress), AADL (planned) and Simulink/Stateflow. This 

relationship is defined as model transformation in GReAT (the MIC tool suite graph 

model transformation specification language) and also, in some cases, in FORMULA. 

2. ADSML (Architecture Design Space Modeling Language): extends the design modeling 

languages with constructs for design space modeling, allowing traditional design 

languages to capture design spaces instead of just point designs. The extensions come in 

the form of introducing design containers with model structure variability such as 

Alternatives, Optional, and variable cardinality containment, as well as Parameterization 

of design elements. Introduction of these design space extensions at all levels within the 

design hierarchy provides a powerful and compact mechanism of representing very large 

design spaces. 

Beyond the core model and design space integration language elements, CyPhy has been 

complemented with the following abstracted sublanguages imported from integrated tools: 

1. Modelica Language:  Modelica is a multi-(energy/physics) domain formalism for 

representing lumped parameter dynamics of physical systems. A Modelica model can 

represent energy flow across systems in an energy domain neutral manner. Modelica 

models are also able to represent hybrid dynamics with the aid of if-else and switch 

constructs and support derivation of causality relation across systems. 

2. Simulink/Stateflow Interface Language: The cyber aspects, specifically the controller 

design, are captured using Simulink/Stateflow models. The CyPhy metamodel integrates 

an abstracted Simulink/Stateflow metamodel, capturing the input, output, and parametric 

interface of Simulink models and defines associations with CyPhy components and 

component interfaces. 

3. CAD Constraint ML: The CAD constraint modeling language represents geometrical 

constraints (axial alignment, surface placement), between CAD components (linked into 

CyPhy components) and allows derivation of CAD assemblies with a network of 

geometric constraints. 

4. Manufacturing (Cost) ML: The manufacturing language represents manufacturing cost 

drivers for buy and make parts. These drivers include factors such as parts types, 

complexity, and counts, join types, complexity, and counts for part assemblies. The 

Manufacturing ML is integrated within CyPhyML allowing associating manufacturing 

cost parameters with CyPhy components.  

 

The metamodels above are represented in MetaGME++ and translated for verification and 

validation to FORMULA.  
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3.1.3. Metamodeling Tools 

1. Generic Modeling Environment (GME):  Vanderbilt’s metaprogrammable modeling tool 

is the modeling environment for MetaGME++. Except the newly implemented support 

for the generative extension of MetaGME, the tool is mature and has been tested in major 

academic and industrial projects. GME is open source and distributed for research as well 

as commercial use.  

2. Unified Data Model (UDM): is a metaprogrammable API tool that provides API-s to 

programmatically manipulate domain-specific models built using GME (persisted in 

GME’s native format or conformant XML). UDM is open source, has multiple 

programming language support (Java, C++, .net, Python), and is mature and tested in 

various academic and industrial projects. 

3. GReAT: is a Graphical modeling environment (and associated toolset) for formally 

defining (modeling) Model Transformations as Graph Rewriting specification over 

Domain Meta Models. The model transformations defined with GReAT can be 

interpretively executed for rapid prototyping, or compiled into executable specifications 

for performance. The formal definition provides opportunities for verifying the 

transformation, and allows for systematic evolution of the model transformation as the 

domain metamodels evolve. 

3.2. Formal Specification of CyPhy 
In this section, we discuss the formalization of the Cyber-Physical Systems Modeling Language. 

CyPhyML is the composition of several sub-languages, such as a language for describing the 

composition of CPS components, a language for describing design-spaces with multiple choices, 

and others. In the following, we discuss only the composition sub-language and by CyPhyML we 

refer to this language. The GME meta-model of CyPhyML is shown in Figure 12. 

Components are the main building blocks of CyPhyML. Components represent physical or 

computational elements with ports on their interfaces. Component assemblies are used for 

building composite structures by composing components and other component assemblies. 

Component assemblies also facilitate encapsulation and port hiding. There are two types of ports 

in CyPhyML: acausal power ports for representing physical interaction points, and causal signal 

ports for representing information flow between components. Both the physical and information 

flows are interpreted over the continuous time-domain. CyPhyML distinguishes power ports by 

types, such as electrical power ports, mechanical power ports, hydraulic power ports and thermal 

power ports.  
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Figure 12: CyPhy MetaModel 

Formally, a CyPhyML model M is a tuple M ≡ {C, A, P, contain, portOf, EP, ES} with the 

following interpretation: 

● C is a set of components, 

● A is a set of component assemblies, 

● D = C ∪ A is the set of design elements, 

● P is the union of the following sets of ports: ProtMech is a set of rotational mechanical 

power ports, PtransMech is a set of translational mechanical power ports, Pmultibody is a set of 

multi-body power ports, Phydraulic is a set of hydraulic power ports, Pthermal is a set of 

thermal power ports, Pelectrical is a set of electrical power ports, Pin is a set of continuous-

time input signal ports, Pout is a set of continuous-time output signal ports. Furthermore, 

PP is the union of all the power ports and PS is the union of all the signal ports, 

● contain : D → A∗ is a containment function, whose range is A∗ = A ∪ {root}, the set of 

design elements extended with a special root element root, 

● portOf : P → D is a port containment function, which uniquely determines the container 

of any port, 

● EP ⊆ PP × PP is the set of power flow connections between power ports, 

● ES ⊆ PS × PS is the set of information flow connections between signal ports. 

We can formalize this language using the following algebraic data types: 

// Components, component assemblies and design elements 

Component ::= new (name: String, ..., id:Integer). 

ComponentAssembly ::= new (name: String, ..., id:Integer). 

DesignElement ::= Component + ComponentAssembly. 

// Components of a component assembly 

ComponentAssemblyToCompositionContainment ::=  

   (src:ComponentAssembly, dst:DesignElement). 

// Power ports 

TranslationalPowerPort ::= new (..., id:Integer). 

RotationalPowerPort ::= new (..., id:Integer). 



 
24 

ThermalPowerPort ::= new (..., id:Integer). 

HydraulicPowerPort ::= new (..., id:Integer). 

ElectricalPowerPort ::= new (..., id:Integer). 

// Signal ports 

InputSignalPort ::= new (..., id:Integer). 

OutputSignalPort ::= new (..., id:Integer). 

// Ports of a design element 

DesignElementToPortContainment ::= new (src:DesignElement, dst:Port). 

// Union types for ports 

Port ::= PowerPortType + SignalPortType. 

MechanicalPowerPortType ::= TranslationalPowerPort  

                               + RotationalPowerPort. 

PowerPortType ::= MechanicalPowerPortType + ThermalPowerPort  

                     + HydraulicPowerPort  

                     + ElectricalPowerPort. 

SignalPortType ::= InputSignalPort + OutputSignalPort. 

// Connections of power and signal ports 

PowerFlow ::=  

   new (name:String,src:PowerPortType,dst:PowerPortType,...). 

InformationFlow ::=  

   new (name:String,src:SignalPortType,dst:SignalPortType,...). 

 

3.2.1. Structural Semantics 

Next, we formalize the structural semantics of the language. A CyPhyML model is well-formed 

if it does not contain any dangling ports, distant connections or invalid port connections, hence it 

conforms to the domain: 

conforms 

no dangling(_), 

no distant(_), 

no invalidPowerFlow(_), 

no invalidInformationFlow(_). 

 

For this, we need to define a set of auxiliary rules as discussed next. Dangling ports are ports that 

are not connected to any other ports: 

dangling ::= (Port). 

dangling(X) :- X is PowerPortType, 

no { P | P is PowerFlow, P.src = X }, 

no { P | P is PowerFlow, P.dst = X }. 

dangling(X) :- X is SignalPortType, 

no { I | I is InformationFlow, I.src = X }, 

no { I | I is InformationFlow, I.dst = X }. 
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A distant connection connects two ports belonging to different components, such that the 

components have different parents, and neither component is parent of the other one: 

distant ::= (PowerFlow+InformationFlow). 

distant(E) :-E is PowerFlow+InformationFlow, 

DesignElementToPortContainment(PX,E.src), 

DesignElementToPortContainment(PY,E.dst), 

PX != PY, 

ComponentAssemblyToCompositionContainment(PX,PPX), 

ComponentAssemblyToCompositionContainment(PY,PPY), 

PPX != PPY, PPX != PY, PX != PPY. 

 

A power flow is valid if it connects power ports of same types: 

validPowerFlow ::= (PowerFlow). 

validPowerFlow(E) :- E is PowerFlow, 

X=E.src, X:TranslationalPowerPort, 

Y=E.dst, Y:TranslationalPowerPort. 

validPowerFlow(E) :- E is PowerFlow, 

X=E.src, X:RotationalPowerPort, 

Y=E.dst, Y:RotationalPowerPort. 

validPowerFlow(E) :- E is PowerFlow, 

X=E.src, X:ThermalPowerPort, 

Y=E.dst, Y:ThermalPowerPort. 

validPowerFlow(E) :- E is PowerFlow, 

X=E.src, X:HydraulicPowerPort, 

Y=E.dst, Y:HydraulicPowerPort. 

validPowerFlow(E) :- E is PowerFlow, 

X=E.src, X:ElectricalPowerPort, 

Y=E.dst, Y:ElectricalPowerPort. 

 

If a power flow is not valid, it is invalid: 

invalidPowerFlow ::= (PowerFlow). 

invalidPowerFlow(E) :- E is PowerFlow, no validPowerFlow(E). 

 

An information flow is invalid if a signal port receives signals from multiple sources, or an input 

port is the source of an output port: 

invalidInformationFlow ::= (InformationFlow). 

invalidInformationFlow(X) :-X is InformationFlow, 
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Y is InformationFlow, 

X.dst = Y.dst, X.src != Y.src. 

invalidInformationFlow(E) :-E is InformationFlow, 

X = E.src, X:InputSignalPort, 

Y = E.dst, Y:OutputSignalPort. 

 

Note that output ports can be connected to output ports. 

3.2.2. Denotational Semantics 

The denotational semantics of a language is described by a semantic domain and a mapping that 

maps the syntactic elements of the language to this semantic domain. In this section, we specify a 

semantic mapping from CyPhyML to the hybrid differential-difference equations semantic unit 

defined elsewhere. 

We use the semantic anchoring framework for the denotational semantic specification of 

CyPhyML as shown in Figure 13. 

 

Figure 13: Semantic Anchoring Framework 

Acausal CPS modeling languages distinguish acausal power ports and causal signal ports. In 

CyPhyML, each power port contributes two variables to the equations, and the denotational 

semantics of CyPhyML is defined as equations over these variables. Signal ports transmit signals 

with strict causality. Consequently, if we associate a signal variable with each signal port, the 

variable of a destination port is enforced to denote the same value as the variable of the 



 
27 

corresponding source port. This relationship is one-way: the value of the variable at the 

destination port cannot affect the source variable along the connection in question. 

The semantic function for power ports is mapping power ports to pairs of continuous time 

variables: 

PP : PowerPort → cvar, cvar. 

PP [[CyPhyPowerPort]] = 

(cvar("CyPhyML_effort",CyPhyPowerPort.id), 

cvar("CyPhyML_flow",CyPhyPowerPort.id)). 

 

The semantic function of signal ports is mapping signal ports to a continuous time variables: 

SP : SignalPort → cvar+dvar. 

SP [[CyPhySignalPort]] = 

cvar("CyPhyML_signal",CyPhySignalPort.id). 

 

The semantics of power port connections is defined through their transitive closure. Using fixed-

point logic, we can easily express the transitive closure of connections as the least fixed point 

solution for ConnectedPower. Informally, ConnectedPower(x,y) expresses that power ports x 

and y are interconnected through one or more power port connections: 

ConnectedPower ::= (src:CyPhyPowerPort, dst:CyPhyPowerPort). 

ConnectedPower(x,y) :-PowerFlow(_,x,y,_,_), x:CyPhyPowerPort,  

y:CyPhyPowerPort; 

PowerFlow(_,y,x,_,_), x:CyPhyPowerPort, y:CyPhyPowerPort; 

ConnectedPower(x,z), PowerFlow(_,z,y,_,_), y:CyPhyPowerPort; 

ConnectedPower(x,z), PowerFlow(_,y,z,_,_), y:CyPhyPowerPort. 

 

More precisely, Px = {y | ConnectedP ower(x, y)} is the set of power ports reachable from power 

port x. The behavioral semantics of CyPhyML power port connections is defined by a pair of 

equations generalizing the Kirchoff-equations. Their form is the following: 

∀𝑥 ∈ 𝐶𝑦𝑃ℎ𝑦𝑃𝑜𝑤𝑒𝑟𝑃𝑜𝑟𝑡. ( ∑

𝑦∈{𝑦|𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑃𝑜𝑤𝑒𝑟(𝑥,𝑦)}

𝑒𝑦 = 0) 

∀𝑥, 𝑦 (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑦) → 𝑒𝑥 = 𝑒𝑦 ) 

We can formalize this the following way: 

P : ConnectedPower → eq+addend. 
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P [[ConnectedPower]] = 

eq(sum("CyPhyML_powerflow",flow1.id), 0) 

addend(sum("CyPhyML_powerflow",flow1.id), flow1) 

addend(sum("CyPhyML_powerflow",flow1.id), flow2) 

eq(effort1, effort2) 

where 

x = ConnectedPower.src, y = ConnectedPower.dst, x != y, 

DesignElementToPortContainment(cx,x), cx:Component, 

DesignElementToPortContainment(cy,y), cy:Component, 

PP [[x]] = (effort1,flow1), 

PP [[y]] = (effort2,flow2). 

 

3.2.3. Semantics of Signal Port Connections  

A signal connection path (ConnectedSignal) is a directed path along signal connections. We can 

use fixed-point logic to find the transitive closure by solving for the least fixed point of 

ConnectedSignal. Informally, ConnectedSignal(x,y) expresses that there is a signal path (chain of 

connections) from signal port x to signal port y. 

ConnectedSignal ::= (CyPhySignalPort,CyPhySignalPort). 

ConnectedSignal(x,y) :-InformationFlow(_,x,y,_,_), 

x:CyPhySignalPort, 

y:CyPhySignalPort. 

ConnectedSignal(x,y) :-ConnectedSignal(x,z), 

InformationFlow(_,z,y,_,_), 

y:CyPhySignalPort. 

 

More precisely, Px = {y | ConnectedSignal(x, y)} is the set of signal ports reachable from signal 

port x. A signal connection (SignalConnection) is a connectedSignal such that its end-points are 

signal ports of components (therefore leaving out any signal ports that are ports of component 

assemblies). 

SignalConnection ::= (src:CyPhySignalPort,dst:CyPhySignalPort). 

SignalConnection(x,y) :-ConnectedSignal(x,y), 

DesignElementToPortContainment(cx,x), cx:Component, 

DesignElementToPortContainment(cy,y), cy:Component. 

 

The behavioral semantics of CyPhy signal connections is defined as variable assignment. The 

value of the variables associated with the source and the destination of a signal connection are 

equal. 

∀𝑥, 𝑦(𝑆𝑖𝑔𝑛𝑎𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑥, 𝑦) → 𝑠𝑥 = 𝑠𝑦) 
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S : SignalConnection → eq. 

S [[SignalConnection]] = 

eq(SP [[SignalConnection.dst]], SP [[SignalConnection.src]]). 

3.3. Formalization of language integration 
So far, we formally defined the semantics of the compositional elements of CyPhyML, but we 

have not specified how components are integrated into CyPhyML. 

In this section, we develop the semantics of the integration of external languages: a bond graph 

language, the Modelica language, and the Embedded Systems Modeling Language (ESMoL) 

language. Note that we can easily add other languages to the list following the same steps as 

presented here. Note also that we include formalization of integration Bond Graphs, as it was 

integrated in an earlier revision of CyPhyML, but it is no longer supported.  

Bond Graphs are multi-domain graphical representations for physical systems describing the 

structure of energy flows. Here, we consider an extended bond graph language that defines 

power ports through which a bond graph component interacts with its environment. Each power 

port is adjacent to exactly one bond; therefore, a power port represents a pair of power variables: 

the power variables of its unique bond. The bond graph language we consider here also contains 

output signal ports for measuring efforts and flows at bond graph junctions, and modulated bond 

graph elements that are controlled by input signals fed to the bond graph through input signal 

ports. Note that the effort and flow variables of the bond graph language are different from the 

effort and flow variables of CyPhyML: they denote different entities in different physical 

domains. The semantics of the languages formalize these differences precisely. 

Modelica is an equation-based object-oriented language used for systems modeling and 

simulation. Modelica supports component-based development through its model and connector 

concepts. Models are components with internal behavior and a set of ports called connectors. 

Models are interconnected by connecting their connector interfaces. A connector is a set of 

variables (input, output, acausal flow or potential, etc.) and the connection of different 

connectors define relations over their variables. In the following, we discuss the integration of a 

restricted set of Modelica models in CyPhyML: we consider models that contain connectors that 

consist of either exactly one input/output variable, or a pair of potential and flow variables. 

The Embedded Systems Modeling Language (ESMoL) is a language and tool-suite for modeling 

and implementing computational systems and hardware platforms. ESMoL consists of several 

sub-languages for defining platform and software architectures, describing the deployment of 

software on hardware and specifying the scheduling of execution. In the following, by ESMoL 

we refer to the state chart variant sub-language of ESMoL that is used for modeling software 

controllers. This sub-language is based on periodic time-triggered execution semantics, and its 

components expose periodic discrete-time signal ports on their interface. 



 
30 

3.3.1. Integration of structure 

The role of CyPhyML in the integration process is to establish meaningful and valid connections 

between heterogeneous models. Component integration is an error prone task because of the 

slight differences between different languages. For instance, during the formalization we found 

the following discrepancies: 

1. power ports have different meaning in different modeling languages, 

2. even if the semantics is the same, there are differences in the naming conventions, 

3. connecting the signals of ESMoL to the signals of CyPhyML needs a conversion between 

discrete-time and continuous-time signals. 

In order to formalize the integration of external languages, we extend CyPhyML with the 

semantic interfaces of these languages. Hence, we need language elements for representing 

models of these heterogeneous languages, their port structures, and the port mapping between the 

ports and the corresponding CyPhyML ports. 

We formalize the models and their containment in CyPhyML as follows: 

BondGraphModel ::= new (URI:String, id:Integer). 

ModelicaModel ::= new (URI:String, id:Integer). 

ESMoLModel ::= new (URI:String, id:Integer, sampleTime:Real). 

Model ::= BondGraphModel + ModelicaModel + ESMoLModel. 

// A relation describing the containment of bond graph models in CyPhyML components 

ComponentToBondGraphContainment ::= new (Component => BondGraphModel). 

... 

 

Note the fields of ESMoLModel: since ESMoL models are periodic discrete-time systems, we 

need real values describing their period and initial phase in the continuous time world. The 

interface ports and port mappings are the following: 

// Bond graph power ports (and similarly for the other languages) 

BGPowerPort ::= MechanicalDPort + MechanicalRPort + ... 

... 

// Port mappings for bond graph power ports (and similarly for other languages) 

BGPowerPortMap ::= (src:BGPowerPort,dst:CyPhyPowerPort). 

... 

// All the power ports in CyPhyML and the integrated languages: 

PowerPort ::= CyPhyPowerPort + BGPowerPort + ModelicaPowerPort. 

// All the signal ports in CyPhyML and the integrated languages: 

SignalPort ::= ElectricalSignalPort 

+ BGSignalPort 

+ ModelicaSignalPort 

+ ESMoLSignalPort. 

// List of all ports: 
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AllPort ::= PowerPort + SignalPort. 

// Mapping from model ports to CyPhyML ports 

PortMap ::= BGPowerPortMap 

+ BGSignalPortMap 

+ ModelicaPowerPortMap 

+ ModelicaSignalPortMap 

+ SignalFlowSignalPortMap. 

 

An integrated model (that is, CyPhyML model integrated with other models) is well-formed if it 

conforms to the original CyPhyML domain, and its port mappings are valid: 

conforms no invalidPortMapping. 

 

A port mapping is invalid if it connects incompatible ports, or the interconnected ports are not 

part of the same CyPhyML component: 

invalidPortMapping :- M is PortMap, no compatible(M). 

invalidPortMapping :-M is BGPowerPortMap, 

BondGraphToPortContainment(BondGraph,M.src), 

DesignElementToPortContainment(CyPhyComponent,M.dst), 

no ComponentToBondGraphContainment(CyPhyComponent,BondGraph). 

... 

// Compatible denotes that port mapping M is valid (i.e., the corresponding ports are 

compatible) 

compatible ::= (PortMap). 

compatible(M) :- M is BGPowerPortMap(X,Y), X:MechanicalRPort, 

Y:RotationalPowerPort. 

... 

 

3.3.2. Bond Graph integration  

The semantics of bond graph power ports are explained by mapping to pairs of continuous-time 

variables: 

BGPP : BGPowerPort → cvar, cvar. 

BGPP [[BGPowerPort]] = 

(cvar("BondGraph_effort",BGPowerPort.id), 

cvar("BondGraph_flow",BGPowerPort.id)). 

 

The semantics of bond graph signal ports is explained by mapping to continuoustime variables: 

BGSP : BGSignalPort → cvar. 

BGSP [[BGSignalPort]] = cvar("BondGraph_signal",port.id). 
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The behavioral semantics of bond graph power port mappings for the hydraulic and thermal 

domains is the equality of the associated port variables. We can formalize it with the following 

rules: 

BGP : BGPowerPortMap → eq+diffEq. 

BGP [[BGPowerPortMap]] = 

eq(cyphyEffort, bgEffort) 

eq(cyphyFlow, bgFlow) 

where 

bgPort = BGPowerPortMap.src, 

cyphyPort = BGPowerPortMap.dst, 

bgPort : HydraulicPort + ThermalPort, 

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow), 

BGPP [[bgPort]] = (bgEffort, bgFlow). 

 

In mechanical translational domain, the effort of CyPhyML power ports denote absolute position 

and the flow denotes force, whereas for bond graphs the effort is force, and the flow is velocity. 

In mechanical rotational domain, the effort of CyPhyML power ports denote absolute rotation 

angle and the flow denotes torque, whereas for bond graphs the effort is torque and the flow is 

angular velocity. Their interconnection in CyPhyML is formalized by the following equations: 

BGP [[BGPowerPortMap]] = 

diffEq(cyphyEffort, bgFlow) 

eq(bgEffort, cyphyFlow) 

where, 

bgPort = BGPowerPortMap.src, 

cyphyPort = BGPowerPortMap.dst, 

bgPort : MechanicalDPort + MechanicalRPort, 

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow), 

BGPP [[bgPort]] = (bgEffort, bgFlow). 

 

For the electrical domain, bond graph electrical power ports denote a pair of physical terminals 

(electrical pins), while in the CyPhyML language they denote single electrical pins. In both 

cases, the flow (the current) through the pins is the same; however, there are differences in the 

interpretation of voltage. In the bond graph case, the effort variable belonging to the electrical 

power port denotes the difference of the voltages between the two electrical pins. In the 

CyPhyML case, the effort variable denotes absolute voltage (with respect to an arbitrary ground). 

The semantics of electrical power port mapping is the equality of the flows and efforts, which 

means that the negative terminal of the bond graph electrical power port is automatically 

grounded to the CyPhyML ground: 
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BGP [[BGPowerPortMap]] = 

eq(bgFlow, cyphyFlow) 

eq(bgEffort, cyphyEffort) 

where 

bgPort = BGPowerPortMap.src, 

cyphyPort = BGPowerPortMap.dst, 

bgPort : ElectricalPort, 

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow), 

BGPP [[bgPort]] = (bgEffort, bgFlow). 

 

Finally, the denotation of bond graph and CyPhyML signal port mappings is equality of the 

interconnected port variables: 

BGS : BGSignalPortMap → eq. 

BGS [[BGSignalPortMap]] = 

eq(BGSP [[BGSignalPortMap.src]], SP [[BGSignalPortMap.dst]]). 

 

3.3.3. Modelica integration  

The semantics of Modelica power ports are explained by mapping to pairs of continuous-time 

variables: 

MPP : ModelicaPowerPort → cvar,cvar. 

MPP [[ModelicaPowerPort]] = 

(cvar("Modelica_potential",ModelicaPowerPort.id), 

cvar("Modelica_flow",ModelicaPowerPort.id)). 

 

The semantics of Modelica signal ports is explained by mapping to continuous time variables: 

MSP : ModelicaSignalPort → cvar. 

MSP [[ModelicaSignalPort]] = 

cvar("Modelica_signal",ModelicaSignalPort.id). 

 

The semantics of Modelica and CyPhyML power port mappings is equality of the power 

variables. Formally, 

MP : ModelicaPowerPortMap → eq. 

MP [[ModelicaPowerPortMap]] = 

eq(cyphyEffort, modelicaEffort) 

eq(cyphyFlow, modelicaFlow) 

where 

modelicaPort = ModelicaPowerPortMap.src, 

cyphyPort = ModelicaPowerPortMap.dst, 
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PP [[cyphyPort]] = (cyphyEffort, cyphyFlow), 

MPP [[modelicaPort]] = (modelicaEffort, modelicaFlow). 

 

The semantics of Modelica and CyPhyML signal port mappings is equality of the signal 

variables. 

MS : ModelicaSignalPortMap → eq. 

MS [[ModelicaSignalPortMap]] = eq(MSP [[ModelicaSignalPortMap.src]], 

SP [[ModelicaSignalPortMap.dst]]). 

 

3.3.4. SignalFlow integration  

The semantics of ESMoL signal ports is explained by mapping to discrete-time variables, and the 

periodicity of the discrete variable is determined by the sample time of its container block. 

ESP : ESMoLSignalPort → dvar, timing. 

ESP [[ESMoLSignalPort]] = (Dvar, timing(Dvar, container.sampleTime, 0)) 

where, 

Dvar = dvar("ESMoL_signal", ESMoLSignalPort.id), 

BlockToSF_PortContainment(container,ESMoLSignalPort). 

 

While signal ports in signal-flow have discrete-time semantics, signal ports in CyPhyML are 

continuous-time. Thus, signal-flow output signals are integrated into CyPhyML by means of the 

hold operator. 

∀𝑥, 𝑦(𝑆𝑖𝑔𝑛𝑎𝑙𝐹𝑙𝑜𝑤𝑆𝑖𝑔𝑛𝑎𝑙𝑃𝑜𝑟𝑡𝑀𝑎𝑝(𝑥, 𝑦) → 𝑒𝑥 = ℎ𝑜𝑙𝑑(𝑒𝑥)) 

 

ES : SignalFlowSignalPortMap → hold+sample+timing. 

ES [[SignalFlowSignalPortMap]] = hold(cyphySignal,signalflowSignal) 

where, 

signalflowPort = SignalFlowSignalPortMap.src, 

cyphyPort = SignalFlowSignalPortMap.dst, 

signalflowPort : OutSignal, 

SP [[cyphyPort]] = cyphySignal, 

ESP [[signalflowPort]] = (signalflowSignal,_). 

 

For the opposite direction, we can use the sampling operator. The sample rate of the sampling 

function is defined by the signal-flow block containing the port. 

∀𝑥, 𝑦 (𝑆𝑖𝑔𝑛𝑎𝑙𝐹𝑙𝑜𝑤𝑆𝑖𝑔𝑛𝑎𝑙𝑃𝑜𝑟𝑡𝑀𝑎𝑝(𝑥, 𝑦) → 𝑠𝑥 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑟(𝑠𝑦)) 
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ES [[SignalFlowSignalPortMap]] = sample(signalflowSignal,cyphySignal) 

where 

signalflowPort = SignalFlowSignalPortMap.src, 

cyphyPort = SignalFlowSignalPortMap.dst, 

signalflowPort : InSignal, 

SP [[cyphyPort]] = cyphySignal, 

ESP [[signalflowPort]] = (signalflowSignal,_). 

 

3.3.5. Power Port Units  

Next, we define the physical units for each of the physical power ports. The Units enumeration 

contains all the supported physical units: 

Units ::= { 

"V", // Voltage 

"A", // Ampere 

"m", // meter 

"N", // Newton 

"N.m", // Newton−meter 

"m/s", // meter/second 

"rad", // radian 

"rad/s",// radian/second 

"kg/s", // kilogram/second 

"Pa", // Pascal 

"K", // Kelvin 

"W", // Watt 

"NA", // Not available 

"J/kg", // Joule/kilogram 

"Pa,J/kg", 

"kg/s,W" // Modelica FlowPort 

}. 

 

PortUnit assigns two units to each power port: one to its effort variable, and one to its flow 

variable: 

PortUnit ::= [port:PowerPort ⇒ effort:Units, flow:Units]. 

PortUnit(x,"V","A") :- x is ElectricalPowerPort; 

x is ElectricalPin; 

x is ElectricalPort. 

PortUnit(x,"m","N") :- x is TranslationalPowerPort; 

x is TranslationalFlange. 

PortUnit(x,"N","m/s") :- x is MechanicalDPort. 
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PortUnit(x,"rad","N.m") :- x is RotationalPowerPort; 

x is RotationalFlange. 

PortUnit(x,"N.m","rad/s") :- x is MechanicalRPort. 

PortUnit(x,"kg/s","Pa") :- x is HydraulicPowerPort; 

x is FluidPort; 

x is HydraulicPort. 

PortUnit(x,"K","W") :- x is ThermalPowerPort; 

x is HeatPort; 

x is ThermalPort. 

PortUnit(x,"NA","NA") :- x is MultibodyFramePowerPort. 

PortUnit(x,"Pa,J/kg","kg/s,W") :- x is FlowPort. 

 

It would be an interesting future work to use these units to verify the consistency of the language, 

in particular the consistency of the port mappings, where other modeling languages may use 

different units. 


